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ABSTRACT

Approximtions are derived for the transfer function factors (poles,
zeros, gain) of a large highly flexible ligquid-fueled boost vehicle.
Various levels of approximations are evaluated and compared with exact
factors for a hypothetical eleven-degree-of-freedom vehicle {the MSFC
Model Vehicle No. 2). Agreement within 1 to 5 percent is achieved,
depending on the amount of coupling taken into account.

The approximations are developed to provide physical insights to the
basic dynamic characteristics of the vehicle, to allow simplified but
meaningful preliminary synthesis studies, and to rapidly identify and
evaluate the effects of variation in vehicle characteristics. The results
explain or increase the understanding of previously observed coupling
phenomena and provide ready means of assessing, by inspection or rela-
tively simple computation, the consequences of change in vehicle char-
acteristics. They also may be employed at the preliminary analysis and
synthesis level to provide appropriate vehicle models without requiring
large scale digital or analog computer facilities.
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SYMBOLS

1g, 1s.
—=_d

Slosh cross-coupling term, ajj = %T T
Effective actuator area

Lead coefficient of denominator

Lead coefficient of X/Bc numerator
Equations of motion matrix, see Eq. C-1

Bending cross-coupling term, see Eq. 2

Effective damping coefficient of fundamental sloshing mass
in jth tank

Number of gimbaled engines
Aerodynamic normal force coefficient
Dissipation function

Load on an actuator

Total number of booster engines
Total force in X direction

Total force in Z direction
T—Xa

Artificial gravitational acceleration, g = i

n; input to ¢ eguation, see Eq. 41
Total booster moment of inertia
Running total section moment of inertia

Running section moment of inertia of the empty airframe less
engines

Moment of inertia of each engine about gimbal point
Moment of inertia of each engine about its own CG

Moment of inertia of the fixed mass in the jth tank
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Effective spring constant of fundamental sloshing mass in
the jth tank

Effective spring constant of actuator-nozzle compliance
Effective hydraulic spring constant

Actuator open-loop gain

Valve pressure feedback ggin

Distance from booster CG to engine gimbal point, positive
forward

Distance from booster CG to aerodynamic center of pressure,
positive forward

Distance from engine CG to gimbal point, positive forward

Distance from booster CG to CG of fixed mass in the jth tank,
positive forward

Distance from vehicle CG to the CG of the fundamental slosh-
ing mass in the jth tank, positive forward

Total length of booster

Total booster mass

Running total mass

Running mass of the empty airframe less engines

Mass of each booster engine

Generglized mass of ith bending mode

Fundamental sloshing mass in the jth tank

Pitching moment about Y axis

Aerodynamic pitching moment derivative, see Eq. B-24

Aerodynamic pitching moment derivative with static correction
for the first bending mode, see Eq. 9

Aerodynamic pitching moment derivative, see Eq. B-29
Aerodynamic pitching moment derivative, see Egq. B-30

Aerodynamic pitching moment derivative, see Eq. B-31
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Aerodynamic normal force derivative,

Aerodynamic normal force derivative with

for the first bending mode, see Eg. 8
Aerodynamic normal force derivative,
Aerodynamic normal force derivative,
Aerodynamic normal force derivative,
Aerodynamic normal force derivative,
Numerator of X/Bc transfer function
Aerodynamic normal force derivative,
Unit vectors along X, Y, Z axes
Negative of transfer function pole
Dynamic pressure

Generalized coordinate

Flow rate into an actuator

see

see

see

see

see

see

Eq. B-23

static correction

Eg.
Eq.
Eq.

Eq.

Eqg.

Aeroelastic correction metrix, see Eq. C-7

Generalized force

Radial distance from origin of earth-centered inertial

coordinates to booster CG

Radial distance from origin of earth-centered inertial
coordinates to origin of X, Y, Z coordinates

Iaplace variable

B-25
B-26
B-3>2
B- 3k

B-28

Reference area for aerodynamic derivative CZa

3-by-3 matrix of Eq. D-3
h-by-4 matrix of Eq. 18

Total kinetic energy

Total thrust of booster engines

Booster velocity
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a(x)

Pa
Be

Total potential energy

Booster velocity relative to air mass
Nominal booster velocity

Component of wind velocity parallel to Z axis
Wind velocity

Station of booster CG

Station of the fixed mass in the jth tank

Station of the CG of the fundamental sloshing mass in the
Jth tank

Station of engine gimbals
Column matrix of dependent variables

Right hand coordinate system with origin at vehicle CG and
X axis along the nominal boost trajectory velocity vector

Aerodynamic axial force, positive aft

Normalized amplitude of ith bending mode at station x

Slope of ith bending mode at station x, Yi(x) = §L Y5 (%)
X

Negative of transfer function zero

Displacement of the fundamental sloshing mass in the jth
tank, perpendicular to the elastic axis

Translation of weighted average vehicle centerline,
perpendicular to nominal trajectory

Angle of attack of weighted average centerline

Local angle of attack at station x

Rotation of gimbaled engine centerline from elastic centerline
Rotation of actuator output from elastic axis

Commanded rotation of gimbaled engines

Virtual displacement of qj

xii



r

oWe Virtual work done by external forces
{6} Column matrix of inputs
A(s) Transfer function denominator
¢ Damping ratio
Ciw Damping of ith bending mode with self-coupling correction,
see Eq. D-1
un Generalized displacement of ith bending mode
e Angle between local vertical and X axis, positive for negative

rotation about Y axis

A General dependent variable

P Vehicle pitch angle, angle between weighted average vehicle
centerline and X axis, positive for negative rotation about
Y axis

¥ Angle between gimbaled engine centerline and X axis, see
Fig. B-3

w Undamped natural frequency

we Uncoupled natural frequency of actuator-nozzle compliance

s Uncoupled natural frequency of ith bending mode

Eﬁ Square of the natural frequency of the ith bending mode with
self-coupling corrections, see Eg. 10

agj Uncoupled natural frequency of the fundamental sloshing mass
in the jth tank

f Angular velocity of XYZ coordinates
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SECTION I
INTRODUCTION

This report presents the results of a research study accomplished
under Marshall Space Flight Center Contract NAS8-11419, "Control Study
for Reduced Bending Frequencies and Increased Coupling for Rigid and
Elastic Modes." The contract covers analytical studies of the control
of large space boosters for which the elastic and fuel slosh modes have
frequencies very near to the desired control frequencies, and for which
there is a great deal of intermodal coupling. The basic objectives of
this study are:

) The development of a model of the vehicle dynamics which

can provide the control engineer with the physical insights

into the modal coupling and vehicle characteristics which
are necessary for a solution of this complex control problem.

° The determination of the limits of conventional control
systems for this general class of vehicle, and to provide
guidelines for determining what degree of vehicle dymamic
complexity requires more advanced control techniques.

[ The evaluation of advanced control concepts for solution
of the stability and control problems for the extreme cases
in which conventional techniques are inadequate.

The material contained in this report deals only with the first
objective. As such, its purpose is to provide the simplest of vehicle
dynamic models, consistent with maintaining physical relationships, to
maximize physical insights into modal coupling and vehicle characteris-
tics. The result should increase the control engineer's understanding
of boost vehicle dynamics. 1In addition, the approximate models devel-
oped can also be used to perform meaningful preliminary synthesis
operations on a much simplified basis, and to assist the designer in
determining effects of deliberate variations in vehicle characteristics

or possible uncertainties in estimated dynamic parameters.

The transfer function for the response of a dependent variable, A,

to an engine deflection command, B., may be expressed in the form



AMs)  WM(s)  MII(s +2z5) (s + 2fjwis + o) )
Bo(s)  A(s)  ApTI(s + ps) M(s2 + 2tiwis + wi2)

The basic objective of this report is to find suitable approximations
for the denominator and numerator roots and lead coefficients of a highly

coupled vehicle.

The numerical values used throughout this report are for a hypothetical
large space booster— the Marshall Space Flight Center Model Vehicle No. 2,
Fig. 1 —at three flight conditions, lift-off (L0), maximum dynamic pres-
sure (Max Q), and burnout (BO).* This vehicle was deliberately contrived
to have a great deal of intermodal coupling and to have bending mode and
fuel slosh frequencies very near desired control frequencies. For example,
at lift-off the first bending mode has a frequency of 2.6 nad/sec, and
there are three fuel slosh modes in the rrequency band from 2.0 to
2.2 rad/sec.™ 1In all, two rigid-body, four bending, and three slosh
degrees of freedom plus the control actuation and compliance degrees of
freedom are considered (because of the symmetry of the vehicle only
motion in the pitch plane is considered, but the results apply equally

well to the yaw plane).

A basic problem encountered in this work was that of determining the
degree of accuracy required in the approximations. For conventional air-
craft studies an approximation is generally considered adequate if it
predicts transfer function pole and zero locations to within 10 percent.
While this same criterion should be valid for most boost vehicle poles
and zeros, the slosh modes pose a special problem. These modes are
represented by pairs of very closely spaced, lightly damped poles and
zeros. Small percentage errors in either pole or zero locations can
mean the difference between predicted closed-loop stability and instability.

Consequently it was decided to try to approximate the slosh modes to

*The burnout condition is taken as just prior to thrust decay.

*¥A detailed list of the pertinent dynamic characteristics of Model
Vehicle No. 2 is given in Appendix I.
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within 1 percent. Subsequent comparisons of approximate and exact pole—
zero separations, as detailed in Part 4 of Appendix G, indicate that the

errors for the slosh modes should be restricted to this order of magnitude.
ORGANIZATION OF THE REPORT

The body of the report contains the final forms of the approximations
with brief discussions of their accuracy and how they were obtained. The
derivations and detailed comparison of exact and approximate values are
relegated to the numerous appendices. Our objective here was to allow
the casual reader to obtain an overview of the results from the body of
the report without becoming bogged down with innumerable matrices and

tables of numbers.

For those who are interested in applying the approximations to a
booster configuration considerably different from the Model Vehicle No. 2,
the details of the derivations must be understood. 1In this instance the
reader must become aware of the validity conditions associated with the
approximations, and should know how and when the approximations should be
modified. We recommend that this individual first read the body of the

report and then the pertinent appendices.

The coordinate system and equations of motion used herein are discussed
in Section II. ©Section IIT describes the general technique used to derive
the approximations as well as the approximations for the transfer function
denominator (open-loop poles and denominator lead coefficient). Approxi-
metions for the pitch angle and bending numerators are covered in Sec-
tion IV. These numerators were selected because they constitute the
elements of the sensor numerators for the most common types of sensors—
attitude and rate gyros. Section V summarizes and reviews highlights of

the approximations and coupling effects.

As noted above, the appendices contain the derivations and detailed
comparisons of exact and approximate solutions. Pertinent informstion

on Model Vehicle No. 2 is glso presented.



SECTION II
COORDINATE SYSTEM AND EQUATIONS OF MOTIOR

The basic coordinate system used in this report follows a nominal
booster trajectory. The origin of the XYZ coordinates is located at the
center of gravity of the vehicle as it moves along this nominal trajec-
tory. The X axis is aligned with the nominal velocity vector, VN (see
Fig. 2). Displacements of an actual booster from the nominal trajectory,

but within the XZ plane, are given by X and Z.

It is shown in Appendix A that the equations of motion can be separated
into trim and perturbation components. The trim equations define the
relationships among certain variables, such as velocity and flight path
angle, for a nominal trajectory. In this report a no-wind, gravity turn
nominal trajectory is used, but the method could also be applied to any

other type of nominal trajectory.

The perturbation equations describe vehicle deviations about the
nominal trajectory. These equations are commonly used in vehicle stability
and control analyses and are of primary concern in this study. As shown

in Appendix A, the perturbation equations can be obtained by simply
® Assuming the XYZ coordingtes to be inertial
° Suppressing the X degree of freedom
® Omitting the gravity force

e Adding an artificial gravity force which acts along the

negative X axis with a magnitude Mg = T—X, (T = total
vehicle thrust, X, = axial drag)

The approach indicated by these four steps is used in Appendix B to
derive generalized perturbation equations of motion of a flexible booster
including body bending modes, fuel sloshing modes, actuator to gimbaled
engine compliance, and actuator dynamics. The example vehicle for this
study (Ref. 11) has three slosh and four bending modes. These, plus

actuator to gimbaled engine compliance, a first-order actuator lag, and
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the rigid-body modes, provide the eleven degrees of freedom in the completes

perturbation equations (see Fig. 3%).

The authors realize that several other derivations of booster equations
have been published. Each of thése earlier works appears to contain
simplifying assumptions regarding modal cross-coupling which were justi-
fied for their particular situations. In this study we are especially
concerned about model coupling. Consequently, the derivation presented

here retains all possible terms consistent with a linear analysis.

One term shown in Fig. 3 deserves particular attention because of a
controversy over its inclusion. The element cjj, which cross-couples the
bending modes, is given by

ey = M1—i[—NT,iJ + BFMElgY] (xg)Y)(xg) — <T—xa>Yi(xB>Y3<xB>] (2)

The underlined term is due to the lateral translation and rotation of the
aft end of the booster and the resultant axial force (T —Xg) caused by
the bending modes.

The bending displacements, Y;(x)n;, have been defined (Appendix B)
to be perpendicular to the booster undeflected centerline, or x axis, in
keeping with the traditional approach to vibrating beam analysis. Under
these conditions only forces perpendicular to the x axis can contribute

to the generalized forces for the bending modes.

Now, in actual fact, the bending of the vehicle dces produce some
motion of an element in the x direction. This longitudinal translation
of the axial forces should produce an additional generalized force for
the bending modes. This longitudinal force was omitted here because
there appears to be no tractable method of evaluating it (except for

uniform rods).

*Note that the variable for the first column of Fig. 3 is the velocity,
Z, because the displacement, Z, does not appear in the equations of motion.
Numerical values of the matrix elements, as well as transfer function
poles, zeros, and lead coefficients, for Model Vehicle No. 2 are given in
Appendix J.
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The controversy then arises as to whether the lateral term, which is
readily evaluated, also should be excluded. Of six authoritative docu-
ments, three (Refs. 1—3) omit it in the development of the bending equa-
tions and three (Refs. 4—6) include it. Reference 1 indicates that the
longitudinal work is generally equal to or greater than the lateral
work—and of opposite sign— for a slender uniform rod. The strongest
argument for omitting the lateral term is that it increases the bending
mode frequencies, whereas the actual thrust effects are to decrease the

frequencies (Refs. 7, 8).

Since one of the major objectives of this study is to develop transfer
function approximate expressions for a flexible vehicle exhibiting strong
modal cross-coupling,; and since the lateral term in gquestion generally
increases the bending mode cross-coupling, inclusion of the lateral term
throughout this study was deemed both useful and conservative. However,
the presence of this term did make the above task more difficult by forc-
ing retention of terms which otherwise would be negligible. The omission
of the term would simplify certain of the approximations presented herein
and, if anything, should increase their accuracy. ¥For the reader who
prefers to exclude the lateral term, it is identified in Fig. 3 and else-

where throughout the report by underlining, as in Eq. 2.
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SECTION III
DENOMINATOR APFROXIMATIONS

Having established the complete 11-by-11 mtrix for the perturbation
equations of motion, the task is now to develop approximations for trans-
fer function poles, zeros, and gains. The approximations will be evalu-
ated by comparison of the numerical results with the exact values

obtained from solutions of the complete matrix.

Approximations for the denominator roots of the 11-by-11 determinant
(Fig. 3) are presented in this section. Approximations for the numerator

roots will be discussed in the next section.

The denominator has 20 roots. These roots are considered in three
groups — the three rigid-body roots, the 14 roots from the three slosh
and four bending modes, and the three roots from the first-order actuator
lag and the actuator—nozzle compliance. But before discussing these
approximations, the general approach used in obtaining them will be

outlined.
A. GQGENERAL TECHNIQUE

The general technique used in deriving both numerator and denominator
approximations can best be described by a simple example. Consider a two-

degree-of-freedom system which has equations of motion of the form

52 + (1)12 a1 52 + b1 X-]
. - o (3)
a252 + bo 8T + wp X2
where uy << up

If the two natural modes of this system are lightly coupled, then coupled
natural frequencies may be approximated by ay and up. A better approxi-
mation for the lower frequency mode may be obtained by including a "static

correction" for the contribution of the higher freguency mode, i.e., the

11



characteristic equation is written

2, .2
@ by
, | = o (4)

bo w3

Since s = jay in the mode, Eq. 4 amounts to assuming

m12<<a§
laqaf| << b]

lag‘b‘]gl << lbgl

The first inequality is true by definition. The other two inequalities
do not necessarily follow from the first, but generally have been found
to hold for the problem at hand. The few exceptions that do occur will
be noted later.

Likewise, the higher frequency mode may be better approximsted by
including a "dynamic correction" for the contribution of the lower fre-

quency mode. This gives a characteristic equation of

S2 a 52
21 5 = 0 (5)
a282 S +(.L)2
or
1 a]s2
= 0 (6)
ap 52 + ub

This is equivalent to assuming

]"M‘%l >> Ib-]l
laged] >> |by

12



Once again the last two inequalities do not necessarily follow from the

first one, but have been found to be valid in general.

The key to application of the above approach is "sufficient" separation
of the uncoupled frequencies (aq and ap). Unfortunately, "sufficient”
cannot be defined in general because the required separation strongly
depends on the degree of coupling and the accuracy desired. For the
Booster problem considered here the method has given satisfactory results
for frequency separations as small as a factor of two. This i1s due, in
part, to the fact that the coupling actually causes relatively smll
frequency shifts. Thus if coupling only changes a frequency by 5 percent,
a 20 percent error in approximating coupling effects still gives a final

result accurate to 0.5 x 0.2 = 1 percent.

If the uncoupled frequencies do not exhibit adequate separation, all
the terms in the diagonal elements must be retained; but it may be possible
to eliminate some of the less ilmportant off-diagonal terms if the previ-

ously noted inequalities regarding ais2 and bj are valid.
B. RIGID-BODY MODES

For low dynamic pressure flight conditions the rigid-body modes are
adequately approximated by the 2-by-2 matrix of the rigid-body degrees cf

freedom, Z and ®:

Ny, Ny . Ny .
T eI R B
. = 0 (7)
E"E__ 52 =+ & S — I\.&' (p
IVy IVy I

For high dynamic pressure flight conditions it is necessary to add a
static correction for the bending modes. This is equivalent to correct-
ing the aerodynamic terms Ng and My for vehicle flexing under aerodynamic
loads. Inclusion of the first bending contribution was considered suffi-
cient for Model Vehicle No. 2 in spite of the high degree of flexibility

involved. This provided an approximation within 3 percent of the exact
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rigid-body modes —an order of magnitude improvement over the uncorrected

approximations.

The corrected derivatives are given by

N: [EMYq(xg) + N
— Nal + T]-l[ 1 }-CZ Tl‘]] (8)
M,y

b=
]

gy (B2t ) - 110)] + )

Mo + 5 (9)
My @7

My,

where®

' 2 - '
(L% = d‘? +1T/1[1—§_NT]11 +éFMElE[Y1 (XB)] - &My, (Xﬁ)'Y-l (XB)} (10)

Thus the approximate characteristic equation for the rigid-body modes is

N N Ne
. Jo oz M
MVy Mvy M

v ) = = 0 (11)
Mo, L Mo,
— s + =~ s — —
TV TV I

or

s + S2(EE£ + jﬁé) . s(_ﬁa . ﬁaM¢ - Néml).+ aMy,
vy

MUy T " avg wivg) T

0 (12)

Unless the vehicle has a small (positive or negative) static margin,
the following condition is satisfied:

M| > w

MVy

*The underlined term may be omitted, as discussed on page 10.
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and the three roots of Eq. 11 can be rapidly approximeted by

P, * Tm (13)

. N - -
(Poy + Pac) o [2t) * s ¢ T * (14)
(ogrogs) oF () & = (15)

An additional validity condition for the above approximations is that

they should satisfy the inequality

|ooipon| >> [pz(Pg; * pgo)| o ay > |24,

Furthermore, if Ea is positive (statically unstable vehicle) and satisfies

2
N . =
|Md| > 12, j&l + 2
N IV Vy
the two real ¢ roots are approximated by
_ Mo 1 (Ve My &
Pop = T*?(m+zvN+v—N (16)
Mo, 1 (Ve My &
Py, = T+?(WN+IVN+71§ ()

C. BILOSH AND BENDING MODES

The derivation of coupled approximmtions for the three slosh and

first bending modes of Model Vehicle No. 2 is a complex task because of

15
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the very smll frequency separations among these four modes. As a first
step in studying the coupling, some of the modal response ratios will be

examined.

If a single second-order characteristic mode of the vehicle could be
excited by itself, then all the dependent variables would be damped sinu-
soidal functions of time. The modal response ratios for this mode are a
set of complex numbers (magnitudes and phase angles). The magnitudes are
the ratios of the envelopes of the sinusoidal oscillations for any two
variables; the angle indicates the relative phasing between the two vari-
ables. Thus, the modal response ratios (MRR) indicate the relative amount
of each variable which is present in each mode; this, in turn, indicates

which coupling terms are the most significant.*

Some of the MRR for the Max Q and BO conditions are listed in Table I.
Examingtion of the table provides clues as to which modes are not so
strongly coupled. The results also show that the labels "ith bending mode"
or "jth slosh mode" are somewhat misleading®® as each mode has significant
contributions from several variables. In fact, for the Max Q condition
the "first" slosh mode has more motion of the second slosh mass than the
first slosh mass; the "second" slosh mode has more motion of the first

slosh mass than the second.

The most silgnificant conclusions to be drawn from the MRR of Table I
are that there is extreme coupling among the slosh masses, strong coupling
between the slosh masses and the bending degrees of freedom, but weak
coupling among the bending degrees of freedom. The mechanisms which

produce these couplings are discussed next.

*The reader is cautioned to distinguish between the terms "slosh mode,"
"slosh mass," and "slosh frequency." Each slosh mode is comprised of con-
tributions from gll the degrees of freedom and, hence, is a coupled
phenomenon. The motions of the slosh masses are dominant in the slosh
modes, however the rigid-body and bending contributions may be important.

**The slosh modes were numbered in the order of increasing freguency
before the MRR were computed.
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TABLE I

MODAIL RESPONSE RATIOS

(a) Mex Q
o TN I o B I = L T
(rad/sec)| | ™ (rad /m) N My N My M M

First slosh 2.750 | 0.308% | 0.00066% | 2.g” | 38.3% 23,27 |0.984" | 0.k98 | 0.0275~
Second slosh 3.047 | 2.3 |o.0785 | 21.87 | 1347 5.55 |0.0126' | 0.0276%| 0.00753"
Third slosh 3.5 | 0.138" |o.007437 | u4.87 | 0.955 | 5.19% [0.2517 | 0.02u0"| o0.00193"
First bending 2.234 | 0.129% | 0.002587 | 1.267 | o0.04087| 1.31” {0.0m” | 0.02027| 0.00434”
Second bending | 6.022 | 0.09087|0.009767 | k.36 | =2.147 349" 15.24F | 0.5457 | 0.00551°
Third bending 9.9kk | 1.16" |o.ok05” | %6.87 | 30.7" 5.9° 19.997 |66.5" b~
Fourth bending | 12.89 | 6.07 |o0.127" | 73.67 |108 187" 8.60  [69.17 |10

(b) Burnout
First slosh ° 3,680 15.7 | 1017 0.156 | 0.118~
Second slosh 4.027 5.21 | 5.72° 0.045 |0.146
Third slosh I .951 2.52% | 2.10" 8.26" |0.998”
First bending | 3.%09 7.567 | 1,997 | 0.1487|0.0659”
Second bending | T.419 4267 | 1. 1.57" |2.73%

+Phase is approximately zero

“Phase is approximately 180°

*Phase not determined
Topase equals 106°




The spring mass analogy for fuel slosh will be used to visualize the
nature of the coupled sloshing and first bending modes. Figure 4 repre-
sents the four types of motion involved. The MRR, lzsi/n1|, of the first
slosh mode for Max Q indicate an oscillation of type "A" shown in Fig. La.*
The forces introduced by the upper and lower slosh masses tend to balance
those of the middle slosh mass so there is relatively little motion of
the main mass, Mp; the coupled frequency should be very near the uncoupled
frequency of the first or second slosh mass (the actuasl difference is less

than 1 percent).

In the second slosh mode the three slosh masses vibrate together and
are opposed by the motion of the main mass (see Fig. 4b). The motion of

the mein mass increases the frequency above that of the uncoupled value.

The third slosh mode is primarily the first and third slosh masses
vibrating in opposition, the coupling arising through the first bending
mode (see Fig. 4c). For the upper and lower masses, the bending and
slosh motions oppose each other, i.e., the bending tends to reduce the

motion of the slosh mgasses relative to inertial space. This should

increase the frequency of this slosh mode and it actually does.

The first bending mode is similar to the third slosh mode, except that
the phasing of the slosh and bending motions is reversed (Fig. 4d). This
should decrease the frequency of the first bending mode and it does.

Note that the slosh—bending cross~-coupling illustrated by modes "C"

and "D" increases the frequency separation between those two modes.

The situation at burnout is somewhat different because there is a
moderate separation of the uncoupled frequency of the third slosh mass
from that for the first or second slosh mass. The third slosh mass is
also an order of mmgnitude larger than the other two. ZFrom Table Ib we
see that, in the first slosh mode, the first and second masses are vibrat-

ing in opposition (mode "A"). 1In the second they are vibrating in unison,

*1In Figure 4 the main mass, My, represents the entire booster less
slosh masses.
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(a) Mode A (b) Mode B

Note: Motion of second slosh
mass in modes C and O
/s relatively small

(c) Mode C (d) Mode D

Figure 4. Spring Mass Model for Three Slosh and First Bending Modes
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presumbly against the main mass of the vehicle (mode "B"). The third

mode is primarily an oscillation of the third slosh mass.

Although numerical values of the MRR were not calculated of lift-off,
certain characteristics of the slosh modes can be estimated. Because the
uncoupled slosh frequencies are all identical, one would expect to have a
coupled mode at that frequency (the second slosh mode frequency is within
0.2 percent of the uncoupled value). In this mode the upper and lower
masses oppose the middle mass (mode "A") and there should be little motion

of the vehicle.

We would also predict a higher frequency mode in which the three slosh
masses vibrate together against the main mass (mode "B"). This should
correspond to the third slosh mode since it is the only slosh mode that
increases in frequency. The remaining slosh modes are probably the upper
two opposing the lower slosh mass with coupling through the first bending
mode.® Since the uncoupled slosh frequency is less than the uncoupled
first bending mode frequency, we would expect the coupling to reduce the
slosh frequency (mode "D") and increase the bending frequency (mode "C").

This result is shown in Appendix D.

Having learned something of the characteristics of the slosh modes,
we will now develop an approximate model to accurately predict the coupled
frequencies. The slosh modes couple indirectly through the finite inertia
of the vehicle and directly through the first bending mode; therefore as
a first approximation we use the three slosh and the first bending modes
with a dynamic correction for the rigid-body modes. As shown in Appendix D

the resultant characteristic equation can be written:

*The lower node of the first bending mode is approximately midway
between the first and second slosh masses for this flight condition.
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s (1 Ms]a11) M52a125 —M53a135 Y1(Xs1)s
+2§ﬁwﬁs-+wé
— 2 21— —] 2 2
Ms1a125 s (1 M52a22) Ms5a255 Y1(x52)s
2
+2f. w, s+ W
S~ S, 52
272 - 0 (18)
2 _ 2 2(; _ ' 2
_MS1a155 Msga25s s (1 M55a55) Y1(x55)s
+ 2(;55(1)533 + wsgz‘
Ms MS MS -
1 2 e 2 5 2 240 =2
P Y1(xs1)s T Y1(x52)s i) Yj(xsﬁ)s 55 + 20w, S + ]
1g. 1.
] 51753
where aij = W + — (15)

The aij‘s are coupling parameters, which result from the rigid-body
dynamic correction, and are in some aspects similar to structural influ-
ence coefficients. If a unit force is applied to a rigid body at a point
ls; from the c.g., the linear acceleration at a point lsj from the c.g.
is given by ajj. The aij’s, like influence coefficients, are symmetri-

cal, i.e., ajj = aji-

The center-of-percussion concept plays a key role here. If one slosh
mass is located at the center of percussion with respect to the location
of a second slosh mass (lSilsj = —I/M), then the cross-coupling between

these two masses is zero (aij = 0). The greater the separation between

the slosh mass and the center of percussion, the greater the coupling.

The errors obtained with the approximation of Eq. 18 are tabulated

in Table D-I. The worst error is only 3.6 percent (the first bending

mode frequency at ILO), but in several instances the slosh errors are

"

As noted in the "Introduction," these errors may

In this

greater than 1 percent.
be unacceptable if pole—zero sequence is of prime importance.

event, the following refinements must be included.
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It can be determined from the modal response coefficients and the
magnitudes of the terms in the equations of motion that a correction for
static effects of the higher bending modes should be added to Eq. 18.
Consequently a static correction for the second bending mode was included.
This gave satisfactory results with two expections-— first bending mode
at 10 and third slosh mode at BO. Adding a static correction for the
third bending mode gave good results for the IO case. The problem with
the third slosh mode at BO will be treated in the last portion of this

section.

With a static correction for the second and third bending modes, the

characteristic equation can be written as:

0 0
0 0
Sy
0 0
c|2  C13
2 Mga¥Yo (X 82 Mg Ynr(x 52 c c =
Ms]YELXs-I) s S1e) 2( 52) 53 2( SB) 21 25
> > ! 3
Mouwp Mpap Mpoap ®p wo
M. Y=z (x 5@ M. Yo (X 82 Mg Yo (x 52 c c
s 3( 51) S5 5( 52) 53 3( 55) 31 30
— 1
2] 2 2 _2
(20)
where*
Sy is the L4-by-4 matrix of Eq. 18

c1y = Holng Bl (xe)Tife) - Brap)Yipe)] (@)

*The underlined term may be omitted, as discussed on page 10.
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Equation 20 is easily reduced® to a 4-by-4 determinant which is identical
to Eq. 18 except for the last row (the first bending mode equation). The
reduced 4-by-4 determinant then contains static corrections to the first

bending mode equation for the second and third bending modes.

Let us now consider the higher (second, third, and fourth) bending
modes. Appendix D shows that the diagonal terms in the equations of
motion always underestimate the higher bending mode frequencies with errors
as large as 6.5 percent. From the MRR and the equations of motion we find
that this is primarily due to an inertial coupling with the slosh masses.
Therefore a dynamic correction should be applied to each higher bending

mode for the slosh masses. This gives the approximation:

g2 0 0 SgYi(ij)
0 52 0 s2Yi(xS )
0 0 62 Y, (xe,) = 0 (e2)

M51Yi(xs1)s‘2 Mngi(xsg)sg MSBYi(xs5)s2 . .
<) '*2§i“&5'+3&

Mj M3 M3

which reduces to the following characteristic equation for the ith bending

mode :
1 2 2 2 — )
ﬁE[Mi — Mg Yy (xg9) — MséYi(XSE) - MSBYi(XSB)]Se +2ims + @ = 0 (23)

Physically, Eq. 23 amounts to removing the slosh masses from the ith mode

generalized mass. That is, the uncoupled solution treats the bending mode

*Equation 20 is first reduced to a 5-by-5 by multiplying the last row
by ¢13 and Egbtracting it from the fourth row, then multiplying the last
row by co /65 and subtracting it from the fifth row. A similar operation
on the fifth row of the reduced matrix will lower it to a U4-by-4. To
correct only for the second bending mode, one simply starts with the
first five rows and columns of Eg. 20.
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frequency aé if the slosh masses were rigidly attached to the vehicle so
that they followed the bending motions exactly (zsj = 0). But in the
actual case, the higher bending mode frequencies are greater than the slosh
frequencies so the slosh masses tend to remain fixed in inertial space.
[zsj = —Yi(xsj)ni]. Equation 23 is equivalent to completely disconnecting
the slosh masses from the vehicle and should therefore give good results

as long as the slosh frequencies are substantially less than the bending

frequencies.

The actual errors obtained from using Eq. 23 are listed in Appendix D.
Except for the second bending mode at BO, the frequency errors are all less
than 2 percent. The relatively poor accuracy for the second bending mode
at BO is not really surprising since its frequency is only 50 percent
greater than that of the third slosh mode, which also has a significant

error as noted earlier. The coupling of these two modes is discussed next.

From the MRR of Table Ib we see that at BO both the first and second
bending modes have considerable coupling with the third slosh mode. To
approximte this effect the characteristic equation need only contain
rigid-body, third slosh mass, plus first and second bending. The first
and second slosh masses are a factor of ten less than the third and are

neglected. The resultant characteristic equation can be written:

Mg
3 .2
1 0 —Er-s' 0 0
Mg.lg
0 1 —51—5 52 0 0
5 o 5 5 = 0 °4)
+2 + Y s Y s
1 155 ] CS5wSBS w 1(x55) 2(x55)
Mg Y'] (XS )
3 5 2 2 A T a2
0 0 ___—Tﬂ_—__— s s -+2§1aﬁs + 3, Cio
Mg Y2 (Xs -
0 0 i Ml W14 M2( 5) s Coq 52+2§2ayas+522
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This can be reduced to

2
Ms Mg.1ls
( - M5 - %: 5)52 Y1(x55)52 Yg(x55)52

+ 2§S§m5554-w§5

Mg ;Y1 (Xs ) = 0 (25)
3 31 .2 D AT T e a2

T s s< +2¢1wq8 + O cyo

Mg YE(XS )
5 3/ 2 )

M—2 s Coq S< + 26pups + 5

The characteristic roots obtained from Eq. 25 are listed in Appendix D.

The above equations considerably improve approximation of the third
slosh and second bending modes, with errors reduced to 0.7 and 1.4 per-
cent, respectively. The frequency approximation for the first bending
mode has a large, 5.8 percent, error but a good approximation for it was
found previously. This error is apparently due to neglecting the first
and second slosh masses. The addition of these two should give an

accurate, albeit complex, approximation for all five modes simultaneously.

Let us now briefly review the results of the slosh and bending mode
approximtions derived above. For slosh and first bending modes the
4-by-b determinant (Eq. 18) provides gross corrections (error less than
3.6 percent) for direct slosh~bending inertial coupling and indirect
slosh—slosh inertial coupling through the rigid-body modes. The accurate
(error less than or equal to 1 percent) determination of coupled slosh
and first bending mode frequencies at LO and Max Q requires the addition
of static corrections for the second bending mode (at LO a static correc-
tion for the third bending mode must also be included). The BO condition
is somewhat more complicated because of the proximity of the third slosh
and second bending mode frequencies. The error for the third slosh can

be reduced to 0.7 percent by considering the third slosh mass plus the
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first and second bending modes (Eq. 25); this also gives the second

bending mode frequency within 1.4 percent error.

The second, third, and fourth (or third and fourth at BO) bending
mode frequencies can be accurately approximated by simply including the
complete diagonal term (self-couplings) and applying a dynamic correction

for the slosh masses.
D. ACTUATOR MODES

The first-order lag due to the actuator and the second-order mode
due to the actuator—nozzle compliance are considered next. Two of the
three approximations for these modes derived in Appendix E are presented

here. The simplest one gives literal expressions for the three modes,

i.e.,
. K
Pg = & (26)
. A
2wy, = 2lgog + & Ko + Kp (a7)
2 . 2 Ko
@, = o ES—I—EE (28

where A 1s effective actuator area
Ko is effective hydraulic spring constant
Ky is actuator open-loop gain
K5 is valve pressure feedback gain
K;, 1s effective spring constant of actuator—nozzle compliance
CE is uncoupled damping ratio of actuator-nozzle compliance

g is uncoupled natural frequency of actuator—nozzle compliance

The meximum error in the first-order lag is 3.6 percent and is 10.3 per-
cent for the second-order frequency. This level of accuracy is adequate
for most design purposes if there is wide frequency separation between

the compliance and bending modes.
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A more more accurate approximstion was derived primarily to reduce
the adverse effect the above errors have on the approximation for the
denominator lead coefficient, Aan. This approximation consists of the
lower right 2-by-2 submatric of Fig. 3 with dynamic corrections for the

rigid-body and bending modes, i.e.,

c [(Mgig)®  (Ip—Mglgle)? 5
{1 ) I—E[ v T o —og
1 ' 2/l 2
+Z El- (IEYi (XB) = MplpYy (XB)) ]}s
1 2 , BUEIE = 0 (29)

+ 2gEaEs + wg + T

—AK K AlKo+K K
L s — 3KL —1—9———215 +Kq+ BKL
Ko A Ko A

The application of Eg. 29 reduces the maximum actuator and compliance

approximation errors to 2.7 percent for p, and 1.7 percent for .

E. IEAD COEFFICIENT, Aa

The lead coefficient for the denominator, coefficient of 520, can be
approximated by simply multiplying the lead coefficients from the approxi-

mations for the various roots,” i.e.,

Ap = [Lead coefficient of 3 slosh + 7, characteristic equation (Eq. 20)]

[ IL]I- ( MS-‘ Y% (XS-‘) MSEYJg_ (X82) MS BYIIE. (XSE)) A(KO + KL)
x —
Ko

| 1=2 My M5 M;

o ((MEJ_E)2 , (I — Mplgls) 2 , i (15Y4 (xp) —MElEYi(xﬁ))E)

M I = My

*lead coefficient from rigid-bvody modes is unity.
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The comparison of exact and approximate values is given below.* The

maximim error of 2.8 percent is certainly acceptable.

Lift-0Off Max Q Burnout
Ap (exact)o.eeveiie it 46.51 35.51 38.75
An (approximation).............. LE.57 36.49 39.71
Percent €rror......oeeeeeeeenans +0.1 +2.8 +2.5

*The units of Aa are (meters)<.
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BECTION IV
NUMERATOR APPROXIMATIONS

The previous section dealt with the approximations for the transfer
function denominator. This section presents the approximations for the
numerstors for some of the motion variables. Complete approximations
are presented for the ¢ and n; numerators as these variables are the only
ones which affect the motion sensed by a position or rate gyro. An
accelerometer or angle of gttack vane is also sensitive to z. Since
these sensors are normally used in low bandwidth load relief loops, only
the approximations for the low frequency (rigid-body) zeros of the Z
numerator are presented. Approximations for the higher frequency zeros

could be developed by applying the same techniques used for the @ numerator.

The discussion of numerator approximations will proceed in a manner
similar to that used for the denominator. The tail-wags-dog zeros are
considered first, then the rigid-body zeros, the slosh and bending zeros,
and finally the numerator lead coefficients. This discussion sequence is

shown in the following flow chart.

Numerator
approximations

- 1 1 —

3 3] C B ]
Tail-wags- Rigid-body Slosh & 1st Higher Lead
dog zeros zZeros bend. zeros bend. zeros coefficients
1] =z
numerator
ENK: N 4] 9
| numerator | numerator | mumerator
4 - - 4 T - - === —
L_5J i SE R 2] m
numerator numexrator numerator
3 n2,3,4 | 143 n2,3,u
mumerators nmumerators
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Before delving into the numerator approximations, let us briefly
review the forms the numerators will take. For the example vehicle all
numerators (except 2) will be of seventeenth-order. Identifying the
zeros with the poles they must closely resemble and adding the tail-wags-

dog effect, the 17 zeros are:

Tail-WagS-00C . « cvteeenenerncnsonsss 2
Rigid-body..voev i 3
Three second-order slosh........... 6
Four second-order bending.......... _§_
Less second-order for particular ’
numerator variable............... -2
17

Two zeros are subtracted because the ¢ numerator does not contain ¢ zeros,
the n; numerator does not contain n, zeros, etc. In each numerator the
missing zeros are replaced by the tail-wags-dog pair. Thus the transfer
function for o, Zsj; or ny is composed of tail-wags-dog zeros divided by
the second-order mode (poles) in which the variable is dominant; one
first-order and seven second-order nearly canceling pole—zero combina-
tions; plus the three poles from the actuator lag and actuator—nozzle

compliance. For example, the ¢/B. transfer function at Max Q is:

© _ —105k _ 62 + 2(-0.00005) (2k.6h)s + (2h.64)2 5 + 0.01369

Be 551“\‘(s—mw%xs+m%m7 X & —0.064202
———— N
Gain Taill-wags-dog zeros and ¢ mode poles Z mode

52 + 2(0.00402)(2.750)8 + (2.750)2 N 52 + 2(0.00528) (2.764)s + (2.764)2 . 52 + 2(0.00646)(3.081)s + (3.081)2
X ff»* 2(0.00498)(2.750)s + (2.750)2 = 82 + 2(0.005T1)(3.047)s + (3.047)2 = s2 + 2(0.00870)(3.131)s + (3.131)2

—
First slosh mode Second slosh mode Thiréd slcsh mode

« B2+ 2(0.0220) (2.142)s + (2.142)2 2 + 2(0.00696)(5.783)s + (5.783)2
s2 + 2(0.0141)(2.23 )6 + (2.234)2 ~ 52 + 2(0.00838)(6.022)s + (6.022)2

—
First bending mode Second bending mode

52 + 2(0.00829)(9.795)8 + (9.795)2 82 + 2(0.00624)(12.98)s + (12.98)2
£2 + 2(0.00712)(9.9kk)s + (9.94412 * &2 + 2(0.00639)(12.89)s + (12.89)2

Third bending mode F‘ourtmmg mode
X ‘ (31)
5 + 14.52 82 + 2(0.0986)(47.53)8 + (47.53)2
A
Actuator lag Actuator-nozzle compliance
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The 7 numerator is eighteenth-order because the first-order Z mode

(gravity turn) term is replaced by the second-order tail-wags-dog zeros.

It is to be noted that the 11-by-11 matrix of Fig. 3 can be reduced
to a 9-by-9 matrix in obtaining the rigid-body, slosh, or bending mode
numerators. -That is, the Bo column is zero except for the last row,
while the By column is zero except for the last two rows; thus the numer-
ator determinant for 2, P, zs3> and n; reduces to a 9-by-9 determinant
multiplied by K1a§. The same 9-by-9 would be obtained if the last two
rows plus the By and Be columns were eliminated and B considered to be
the input. ILooking at it in another way, the 9-by-9 is the first nine
rows and columns of the complete matrix with the negative of the B column
substituted for the variable of interest. Throughout the remainder of

this section we will deal only with the 9-by-9 determinants.
A. TAIL-WAGB-DOG ZEROS

It is well known that the tail-wags-dog effect results from the
inertial reaction forces due to swiveling the control engines. These

2 coefficients of the £ column.

inertial reaction terms appear in the s
We therefore approximate the TWD zeros by taking the appropriate term

from the B column, i.e., for the ¢ numerator,

T _
Y il B .
“mWp = Mglpl, — Ig (32)

for the n4 numerator,

+ Yi(xp) — EMELEYS(xp)
MplgYi(xg) — IgYi(xg)

i) (33)

and
Emp = © (3k)

These approximations are exceptionally accurate in the ¢ and n4 numer-
ators at all three flight conditions. The frequency errors are less
than 0.3 percent except for a 1 percent error in the My numerator at BO.
In all cases the exact damping ratio is within the narrow range

-0.87 x 10_'1+ S Emp S 0.Th x 10_4.
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3. RIGID-BODY ZEROS
1. 2 Numerator

For the Z numerator, the rigid-body mode is represented by a pair of
ZEroSs, z®1 and Zeps * As shown in Appendix F, it is only necessary to
include the 7 and ¢ equations with static correction terms for the first

bending mode coupling. This gives a characteristic equation of

N N Ny
P s _5_I2 5y __"1
1 My © 8 T M 8 Gp) -
Mg o MM Tt @nCe) -nGe)] |
i VY I I -
MY] (XB) —NT:]'I 1
M52 M, <
197 197

Note that in Eq. 35 only the thrust portions of the static terms in the
B column have been retained, and that the B column and nq row have been
normalized to provide unity values in the main diagonal. Similar normal-

ization will be employed throughout the remainder of this section to avoid

confusion in the expressions for the numerator lead coefficients.

Equation 35 results in rigid-body approximations within 5 percent of

exact values. Since these zeros are relatively well separated from any

vehicle poles, this approximation is considered adequate.
2. ¢ Numerator

The ¢ numerator has a first-order rigid-body zero at very low frequency;

the maximum value for Model Vehicle No. 2 is 0.014 sec_T. This zero is

-3

32

approximted within 2.5 percent by

. 1
ZZ =W1-\_'[



3.

Rigid-Body Zeros (contd)

N4 Numerators

At IO the three rigld-body zeros of all the 7n; numerators are at the

origin because:

[ ) The constant terms in the 2 column gre zero

.® The constant terms in the ¢ column are equal to
~g times the s terms in the Z column

e The s terms in the ¢ column are zero

For the n; numerator at other flight conditions it is only necessary

to include the rigid-body equations and the static effects of M1 s i.e.,

N1
My Vi

e
My
2. %
vy
-1,
My

M MY (xg)
Mo, M lg
T T 0p) = 0 (37)

For the np, UEY and n) numerators at Max Q it 1s necessary to add a

static correction of the first bending mode.

This gives the character-

istic equation for the rigid-body zeros:

My

Mo o My
Ivy Ivy
N —Na,

My Vi M3
Ni; —Ni;
M; Vyy My

—Mn. + 8M[Yq (xg) — 1Y4 (xB)]

N
~&Y{ (xg) — -

0 (28)




Rigid-Body Zeros, 1; Numerators (contd)

At BO the static correction for the first bending mode is small because
the Mni’ Nni’ and Nﬁi were assumed zero in the exact solution. The main
source of coupling is the third slosh mass (the other two are very smll).
Addition of the third slosh mass static correction gives the characteristic
equation (note in this case that it was found to be important to retain the

2

s and lSBS terms in the slosh equation):

Ng, N@ _ Ne, 0 Mj
S +MVN MVNS g_ﬁ MY:L(XB)
Mo o M Me TEs 1y 1
TV vy I I Y (xg
= 0 (39)
S 1 o) _
— — (14 8 — g) 1 0
e (e
55 a§5 M Y‘
) . —-g i (x
Nas N s5"1(*s3) :
M Vy My M
where i = 2, 3, 4

Using Egs. 37— 39 as applicable, the maximum error in the rigid-body zeros
of the n; numerators is an acceptable 8 percent. A complete tabulation of

errors is given in Appendix F.
C. BSLOSK AND PIRST BENDING ZEROS
1. ¢ Numeretor

The situation for the slosh and first bending zeros of the ¢ numerator
is similar to that for the slosh and first bending mode poles. As shown
in Appendix G, it is generally necessary to construct the characteristic
equation from the slosh and first bending equations with a dymamic correc-
tion for 7 and a static correction for the second bending mode. The

characteristic equation can then be written as Eg. 40.
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1, 2 .
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Mg flg v 2 0
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M lB
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N )
¥y (xg )My, Yy (xg
M 15,1 (xg) —— 1 J e + 208
151Y1 (xﬂ)]se fﬁg[h (xs2) _ 152Yl'|(xﬁ):|sg MLR[Y'I(XBB) - 515 ]52 52+ 28 an _—M1leN 1
[Y1 (%sy 1z M ;] P YL(?E) "
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1 1g.¥a(xg) Yo(xg )M, 5
Ls, T2(xp) Mo top'2(xp) _5[Y2(XS - EBZXB] MalgVy 2t g e 1
”1[12(,(8) B 115 Hp['2 2l 2 Mel®7 s Jo Y lrg)
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o5 + 521213 & ®2 T i, & 21g
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' (41)
gy = Mp, + éM[lBYi(xB) - Yi(xﬁ)]



Slcsh and First Bending Zeros, ¢ Numerator (contd)

The most important difference between Eq. 40 and the denominator
approximation is the inclusion of the g; and Mﬁ1 terms. These terms
result from the bending inputs to the ¢ equation. They were not included
in the denominator approximation because the diagonally opposite terms
(the ¢ contributions to the bending equations) were only small aerodynamic
terms. In the © numerator the small aerodynamic terms are replaced by
sizable ones from the B column. In other words, there is little open-
loop coupling between ¢ and the bending modes; but with a high gain ¢ loop
closed, there is considerable coupling because of the appreciable g inputs

to the bending modes.

The frequency errors from the approximte zeros of Eq. 40 are less
than 1 percent, except for the third slosh zero at BO which is 2.6 per-
cent. The problem here is the same as for the denominator — the frequency
of the third slosh zero is too close to that of the second bending zero.
The remedy is also the same-— use an approximation which includes the third
slosh, first and second bending modes, and the dynamic effects of the rigid

body. The resultant characteristic equation is:

Ms. /1
[1+-—%¢(3%§—4)]s2 Y1(x55)52 YE(XS5)82
+ 2§85w55s + w§5
M 15, Y(xp)
1\: [Yl(XS5) 851; Xﬁ}sa 82+ 20 w8 0
* (_D% + I‘/;-llB g'l

Mg 1s Yé(xg) _
M, [Y2(xs5)— 2 lﬁ 52 0 52+ 2§2m2s

YAx,)
+a B g,
Mplg

At BO the maximum frequency error for Eq. 42 is 0.2 percent.
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Slosh and First Bending Zeros (contd)

2. M Numerator

The approximation for the three slosh zeros of the 4 numerator is a

3-by-3 characteristic equation:

Mg, Y3 (xs~|) 1 }Y1 (xsg) 1 Y1(x53) 1
T ) [’ﬁ T ) (M T lxp) M
1 1
+ is}—lﬂ] - Ms1311} 82 + S}lﬁ - 312£M5252 + L}lE] - a B;Msfe
+ 2;51%15 + u.é]
1 (xs) [ 152161 MSzyl(x52)[1 }Y1(x53)1
N (xg) M7 TT Lo ey | T (xp) M
1 1
- 812;Ms1 8® + 5—211e] - M52322§52 + Silﬁ — 823 Msjse = 0 ()'I'5)
+ 2§52m528 + u%z
{Y1 (xs1) 1, 1551(3] {Y1 {(*s0) [, } Ms Y1 (x:;})[]
) 8 * 7T ) ¥ NG
15:18 1g,lp
& 5}“6152 + =3 - “235"5252 +—3 ] - M55335€s2
+ 2;55%35 + ‘1‘255

In the denominator approximations (Eq. 18 or 20) the slosh coupling
depended on ajjs which is proportional to the distance of one slosh mass
from the center of percussion of a second slosh mass. In the above 7,
numerator there is an additional term, [1/M + (lsjlﬁ)/I], which is pro-
portional to the distance of a slosh mass from the center of percussion

of the gimbaled engines.

As shown in Appendix G, the zeros obtained from Eq. 43 are quite
accurgte for all flight conditions. Only one frequency is in error by

greater than 1 percent and that is the second slosh at Max Q (1.3 percent).
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Slosh and First Bending Zeros (contd)

3. Higher Bending Numerstors

The approximation for the slosh and first bending zeros of the higher
bending numerators (n2, 13» and nh) is quite complicated. It is necessary
to include a dynamic correction for rigid-body, three slosh, and two
bending modes. The characteristic equation can be reduced to a L-by-4

which can be written as:

My Yi(xs ) Yi(xsz) 1g,1g Yi(xs ) 1 lsy1p
b el Fers - 4 |t ¥ fray)
1
+ .}lB] - M.1a11=52 - 312=M'252 - u13=M,312
+ 2g’1u¥1- + u€1
(%) [, | leots - Ms Y1 (xs) 1 Y1(%s ;) | el 2
TopT K T T (x) (M Tl YT | ¥ (xep)®
1
- ,12:,,'1,2 + 'ilﬂ] - "-2‘22;02 - ‘23;'4-)‘2
+ 2;-2%29 + u€2 - 0 (4)4_)
Yi(xl1) lnzlﬁ Yi(xlz) 1 llzlﬁ MsjYi(le).
{yizxﬂS 2 Tl (M * T VY ) |W 1 (xa;)e®
1
- 5!)1'1.2 - .2)})1'2.2 + 'i]‘ﬁ] - u’}“}}},Z
+ agn}“’u}' + “€}
[Y’ fxe,) ¥, (xs) [Y‘ ("})  + Las + T
Yi(x,1)Y1(xg) Moy o _ Yi(xsa)Y1(Xﬁ) E:g 2 _ 14 {xa )Y1(xﬁ)]§:2 2 _ eq MYy (xg)
- S CV I T3 (x5) M, Yi;xﬁj u ° MY (x5)

where 1 = 2, 3, L

The accuracy of the zeros obtained from Eq. 44 is quite good. Out
of 36 cases (four zeros x three numerators x three flight conditions)
only three have errors greater than 1 percent, and all these occur in
the 7, numerator. Of these three, ome is the third slosh at BO (6 per-
cent error); this will be reduced to 0.1 percent by using a third slosh

and first and second bending approximation to be given next. The other
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Slosh and First Bending Zeros, Higher Bending Numerators (contd)

two errors are 2.1 and 2.2 percent; no attempt to further reduce these

will be made because of the relative unimportance of the n) numerator.

At BO the third slosh plus first and second bending zeros for the
, numerator can be approximsted by considering these modes with a
dynamic correction for the rigid body. The characteristic equation can

be written as:

{ Mg Yh(x53) 1s,lp
" Yu(XE) M 2 Y1(*53)52 Ye(xa})se
le:1p ls.lp
- M55a33}52 + 2§sju;535 + cuiz + _Y:r1xﬁ_l* 55 ] + hEMh 55 ]
ng Y)+ (x55)[ Sﬁlﬂ]
Yu(xB) I
Mg Y1(X'B)Y1+(x5) o
o - e £ v Eoe - & - o (15)
0
, Bey Y1 Op)Yi (Xe5) oMY, (%)
1, (%) My 15, (xg)
Mo Yo(%p)Y), (%s5) L
EﬁY2 Xa5) = ———Ym)—jl 82 + 2lgms + TR
0
B 3 Yol [Xs ) e 2M Y (%)
3 5 B .
e T RE A S nenn

The three zeros given by Eq. 45 have errors of less than 1 percent.
D. HIGHER BENDING ZEROB
1. ¢ Numerator

The approximation for the higher bending (ng, N3, and TN, ) zeros
of the ¢ numerstor is similar to that used for the denominator. Basically,
a dynamic correction for the slosh masses is applied. The characteristic

equation for the n; zero is (see Appendix H for the derivation):
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Higher Bending Zeros, @ Numerator (contd)

= 0 (46)
where i = 2, 3, L

Equation 46 amounts to correcting both the ith mode generalized mass and
stiffness. The zeros obtained from Eq. 46 are quite good; only two
frequency errors are greater than 1 percent——-nu zero at Max Q (1.4 per-
cent) and 1, zero at BO (2.9 percent). The error in the 1, zero at BO
is reduced to 0.2 percent by using the third slosh mass plus first and

second bending approximation of Eq. 42.
2. N, Numerator

The approximation for the n; numerator is similar to that above, i.e.,

. Mg .Ys . Y )Y (%)
: —':E: 53 ;IXSJ) [Yi(xsj) . 1(i:il%:5 3 ] 2
J=1
_ _D M-lYi(XB)

+ 2fjays v T - 011‘@‘(;9 = 0 (47)
where 1 = 2, 3, k

0f the zeros obtained from Eq. 47, again only two have errors greater
than 1 percent— ), zero at Max Q (1.4 percent) and Ny zero at BO

(1.1 percent) The error in the No zero at BO is reduced to 0.6 percent
by using the third slosh plus first and second bending approximation

given in Appendix G, Eq. G-5).
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Higher Bending Zeros (contd)
5. Higher Bending Numerstors
The two higher bending zeros of the 7, Mz, Or Ty numerator can be

approximated by generalizing Eq. 47. The n4 2ero of the 7, numerator is

approximated by:

3 MS_Yi(xs.) Yk(xsj)Yi(xB) o
1= [lxey) - (xg) i
J-_:-] L ki
_ M Y5 (xg)
+ 2fays  + w?_ - Ckiﬁf = 0 (48)
where i %

i, k = 2, 3, k4

Equation L8 works very well for the Mo and N3 numerators, in which all
the frequency errors are less than 1 percent. For the n; numerator the
np zero at BO has a 5.9 percent error, but this can be reduced to

0.3 percent by using the third slosh plus first and second bending
approximation of Eq. 45. The other zeros of the ny numerator have errors
less than 3 percent, and no attempt was made to reduce these because of

the relatively low importance of the ny, numerator.
E. LEAD COEFFICIENTS

The approximation for the lead coefficient of the ¢ numerator, Ag,
will be discussed in some detail. The approximations for the ny numer-

ators are then straightforward variations.

The ¢ numerator of the complete 11-by-11 matrix, as noted earlier,
is equal to K1w§ times the 9-by-9 determinant (the first nine rows and
columns of the 11-by-11 with the negative of the B column substituted
for the ¢ column). The contributions of the 9-by-9 to the lead coeffi-
cient will be approximated by multiplying the lead coefficients from

each of the submatrices used to approximmte various zeros, i.e.,
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ACP = K-I(D%'% (MElElﬁ - IE)

lead coefficient of 4-by-4 determinant used
for slosh and first bending zeros, Eq. 41

L b) Mg.Y5 (XS ) Yi(XB)lS ] }
T i ik i L R \
* 5L { Jg'l My [Yl( °4) 1 )

Several points about this approximstion may need clarification.

The C(Mglglg — Ig)/I term is obtained directly from the B column.

2

Since we are considering the ¢ numerator we use the s“ coefficient in

the @ row of the B column, i.e., the diagonal term.

A second point is that the contribution of the slosh and Ny Zeros
mist be the lead coefficient of the L-by-4 of Eq. 41 and not the 7-by-T
of Eq. G-1. In the T-by-T7 the B diagonal term is lB/I’ which has already
been accounted for in Eq. 49 in the C(MElElB — Ig)/I term. Therefore,
if Eq. G~1 1s to be used, the whole B column should be multiplied by
I/lﬁ to reduce the diagonal term to 1. In writing the T7-by-T7 this was
not done because it would have been confusing to the reader. It was
accomplished, in effect, when the determinant was reduced to a 4-by-L.
Likewise, in Eq. G-1 the static correction for the second bending mode

should be written so it does not affect the lead coefficient.

The final point is that the lead coefficient from the rigid-body modes
is unity and therefore does not appear explicitly in Eq. 49.

By similar developments we find that the lead coefficients of the

bending numerators can be approximated by:

Ao, & Kol g [MelE¥i(x) — Inti (xp)]

[lead coefficient of 3-by-3 determinant]
used for slosh zeros, Eq. 43

4 5, Mg Y3 (X)) [ ¥, (xs.)Yi(xB)J
— =J V7 y. - J
x I JZ‘T w0y Ty (73) (50)
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Ap, = K0% & [Me1g¥y (xg) — Tg¥i(xp)]

[lead coefficient of 4-by-4 determinant used]
for slosh and first bending zeros, Eq. 44

. {1 —ZB e % () [Yi(xsj> —Yk(xsj)Yi(xﬁ)]} (51)

i=2 3=1 M; Yk(xg)
i#k

The approximate and exact lead coefficients are summarized in Table II.
The approximations are quite good, with only one error greater than
2 percent. The Ny numerator coefficient has a 6 percent error at Max Q,

but considering the relative unimportance of Ny this is entirely

satisfactory.
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TABLE IT

SUMMARY OF NUMERATOR LEAD COEFFICIENTS

FLIGHT CONDITION

NUMERATOR | UNITS Lift-Off Max Q Burnout

Exact Approx. Error Exact Approx. | Error Exact Approx. | Error
0] me/sec5 —958.37 | —968.6% | +1.1 —-1054.1 | =1064.4 | +0.9 | -5805.3 | -5851.9 | +0.8
n (m/sec)?| 37,806 | 38,523 | +1.6 38,546 | 38,925 | +1.0 | 448,920 | 450,170 | 0.3
n, (m/sec)d| U5,Lkk | 45,8%0 | +0.8 | 57,803 | 58,486 | +1.2 | 278,210 | 277,770 | —0.2
B (m/sec)?| 46,838 | 47,005 | +0.4 | 68,743 | 68,469 | +0.4 | 47,266 | 47,225 | —0.1
n, (m/sec)3| 20,845 | 20,839 | -0.0% | 11,88 | 12,593 | +6.0 | 37,504 | 36,957 | =1.5

Error = Approximate—Exact x 100

Exact




SBECTION V
BUMMARY

Approximte expressions for the transfer function factors of a large
highly flexible boost vehicle have been derived. The resulting approxi-
mations have been evaluated and compared with exact values for the
Marshall Space Flight Center Model Vehicle No. 2. The approximations
include the vehicle transfer function poles (or characteristic roots),
nunerator zeros for motion quantities sensed by attitude or rate gyros,
and lead (or gain) coefficients. The numerator approximations provide
the first step in determining approximate expressions for gyro output

transfer function numerators.
The approximations have been developed to:
e Provide the control system designer with physical insights

to the basic dynamic characteristics of the vehicle

e Assist the designer in performing simplified, yet meaning-
ful, preliminary synthesis studies

@ Assist the designer in evaluating the effects of deliberate
variations, or possible uncertainties, in vehicle dynamic
characteristics

Accordingly, various levels of approximation have been presented and
discussed for each of the dynamic modes. The approximate expressions
indicate the coupling terms that must be included according to modes of
interest, level of accuracy desired, and flight condition. The basic
approach has been to include all contributing factors within the immedi-
ate vicinity (frequency) of the mode of interest plus static or dynamic
corrections for those modes outside the region of interest. The result-
ing approximations for Model Vehicle No. 2 are of the form:

e Rigid-body poles — Two degrees of freedom (attitude and

translation) plus a static correction for the first
bending mode

° Slosh and first bending poles — Four degrees of freedom®
(displacements of the three slosh masses and the first

*The cross-coupling among these four modes is unusually large for
Model Vehicle No. 2 because they all lie in a very narrow frequency band.
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bending deflection) plus dynamic corrections for the rigid-
body modes and static corrections for higher bending modes

) Higher bending poles — One degree of freedom (ith bending
mode deflection) plus dynamic corrections for the slosh
modes

e Actuator and actuator—nozzle compliance poles — Two degrees
of freedom (positions of actuator output and nozzle) plus
dynamic corrections for rigid-body, slosh, and bending modes

The method of obtaining approximate zeros is comparably simple.

For Model Vehicle No. 2 at three flight conditions, the approximate
expressions have been shown to provide transfer function factors which
are generally within 5 percent of exact factors obtained from the com-
plete 11-by-11 mtrix (containing all coupling terms). Where appropri-
ate, approximations good to within 1 percent also are presented for
situations where greater accuracy may be desired, e.g., slosh mode poles
and zeros. Similar accuracy should be obtained for other boost vehicles
of the general class represented by the MSFC Model Vehicle No. 2. For
considerably different vehicles it may be necessary to modify the
approximte expressions presented here. Nevertheless, the same approach
can be used and a thorough understanding of the material in this report

will enable the reader to make the appropriate changes.

The following observations, made during this study, are indicative of

the physical insights to coupling effects provided by the approximstions:
Rigid-Body Mecdes

The primary effect of vehicle flexibility is to alter the
aerodynamic characteristics of the vehicle. The principal
contribution arises from the first bending mode. The next
largest contribution comes from the third bending mode,
but is comparatively small.

8losh and First Bending Modes

1. ZFor Model Vehicle No. 2, two slosh modes involve strong
cross~coupling among all three slosh masses; the third
slosh and first bending modes involve strong coupling
among two slosh masses and the first bending mode.

2. Slosh masses couple through the finite inertia of the
vehicle. The degree of cross-coupling depends on a
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center-of -percussion concept: cross-coupling between
slosh mass "a" and slosh mass'b" is proportional to the
distance between mass "b" and the center of percussion

1" "

for a force applied at the location of mass 'a'.

3. The coupling between a slosh mass and & bending mode
depends on the ratio of slosh mass to generalized bend-
ing mode mass, the magnitude of the bending mode shape
at the slosh mass location, and the separation between
the uncoupled frequencies of the slosh mass and bending
mode.

4. Because of the strong coupling among the slosh masses
in this vehicle, it is possible to increase the damping
of all slosh modes without baffling all the fuel tanks.
Thus it may be possible to take advantages of this
coupling and, through selective location of baffles, to
reduce the amount of baffling required.

Higher Bending Modes

1. The dynamic correction for the slosh masses amounts to
removing the slosh masses from the generalized bending
mode mass. The reduction in bending mode mass accounts
for the commonly observed increase in the coupled
frequency (e.g., Ref. 5).

2. This correction is required because the slosh masses do
not respond at the higher bending mode frequencies and
hence remain nearly fixed in inertial space.

In addition to physical understanding, the approximations provide
ready means of assessing, by inspection or relatively simple computation,
the consequences of variations in vehicle dynamic characteristics. They
also may be employed to generate vehicle dynamic models appropriate at
the preliminary analysis and synthesis level without requiring access to

large scale digital or anmalog computer facilities.
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APPENDIX A
IQUATIONS OF MOTION FOR A DYNAMICALLY SIMPLE BOOSTER

The objectives of this appendix are to

[ Illustrate the separation of the equations of motion
into trim and perturbation components

) Develop a simpler alternate approach for deriving
the perturbation equations

These goals can be obtained by considering a dynamically simple booster
in which the effects of engine mass, fuel slosh, and body bending modes

are neglected.

As shown in Fig. 2 (page 6), the vehicle perturbed position with

respect to inertial ccoordinates is given by
Ric = Rpp + X1y + 21, (A-1)

The angular velocity of the XYZ coordinates is

_ —_ . Vi sin 6\ —
Q = o, = -6 +NR—— Ty (A-2)
D

Therefore the linear velocity and acceleration of the booster are

Rpg = Vyly + X0 + 27, + 0 x (X1, +21,)
= (Vy+X+02)T4 + (2-0X)7, (A-3)
Ryc = (Vg+X+0Z+02)Ty + (Z—0X—0X)Ty

Ric

+ 0 x [(g+xeaz)Ty + (2—QX)TZ]

(T +X +02 +202 - 0%X) T, + (—QVy +Z— OX—20%— 022)T,  (A-4)

The angular acceleration is (Q — $1)Ty.

49



Neglecting the effects of engine mass, the external forces and moments

on the vehicle can be written (see Fig. A-1):

F, = Mg cos 6 — N sin Py
+ [(F—EQ)T - Xa] cos @, + % cos (By +Pp) (A-5)
F, = Mg sin 6 + Naa1 cos @,
+ [(F—'F'—C)T - xa] sin @, + % sin (By + @) (A-6)
My = —lCPNaG1 - lﬁ % sin B1 (A-T)
9 X
cT ¢,
F

(_F;C>_T_/ 0 _—

== X, /

Mg Z

~ (' 1[3) lep —

Figure A-1. External Forces on Simple Booster
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Combining Egs. A-4 to A-T7 with the assumptions

1. Vehicle mmss and moment of inertia are constant

2. Angles P and B, are smell, i.e., smll angle
approximations for trigonometric functions can
be used

5. Product @qaq is negligible

the complete equations of motion can be written:

T — X5 — Mg cos ©

M(Vy + X + Q2 + 207 — 0°X) (A-8)

(T-%X, )Py + %T— By + Ngo, + Mg sin 6 M(—Vy + Z— 9X — 20X~ 022)  (A-9)

CT .
lepNo + 1g 5 By I(% —&) (a-10)
An additional equation which relates the angle of attack, aq, to the
other variables is also required. The inertial velocity of the booster
is given by Eq. A-3. Allowing for a wind of velocity W1, with components

W1X and w1z, the vehicle velocity relative to the air mass is given by
(see Fig. A-2):

Voir = (W +X+02 W )Ty + (2-0X—Wi,)T, (A-11)

Vehicle
Centerline

Local |
Vertical
Up

z

Figure A-2. Components of Angle of Attack
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Thus the angle of attack is

a1 = Cp1 — tan

< (A-12)
Vy + X + 9% — Wiy

Neglecting relatively small terms, using the small angle approximation,

and introducing the substitution

W= Wy, (A-13)
reduces Eq. A-12 to
0= (A-1k)

The complete equations of motion can now be separated into trim and
perturbation components by separating aq, 81, @1, and Wy into nominal

components (oy, By, Py, and wy) and perturbation components (o, B, @,

d w).
e R hoTowre (a-15)
B1 = By tHB Wy = Wy t+W
The resulting sets of equations are shown below.
Trim Equations
T — Xy —Mg cos 6 = My (A-16)
(T—X, )y + —FCE By *+ Noogy + Mg sin 6 = —Mavy (A-1T)
CT o
lepNooy + 18 5 By = IOy (A-18)
+ N (a-19)
Qi = — -
N PN Vy
. VN sin 6
Q = —(e e ) (A-20)
RID = VN cos 6 (A—21)
Perturbation Equations
0 = X + 02 + 202 — 02X (A-22)
(T-X,)o + —C:'FI B+ Ny = M(Z— QX — 20X — 92z) (A-23)
leploe + g 7B = I(§ - 9)‘ (A-2L4)
(o2 =q)+W_Z (A-25)

VN
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The trim equations define motion during a "perfect" launch, i.e.,
flight along the nominal trajectory. ©Solution of the trim equations
for some given By and wy yields the time histories of Vy, 6, Q, Rp, Qs
and Q-

The perturbation equations describe vehicle motion with respect to
the XYZ coordinates. Since the maximum values of Q and Q are on the
order of 0.01 rad/sec and 0.0002 rad/secg, respectively, these terms
affect the very low frequency motions of the vehicle wherein other slow
variations, such as vehicle mass and moment of inertia, must also be
considered. Consequently, for the study of vehicle attitude control,

bending, and fuel slosh the § and Q) terms can be neglected.

Additional simplifications result if the nominal trajectory is

restricted to a no-wind, gravity turn trajectory. Then

C(,N = BN = CPN = WN = 0 (A—26)

and a, B, and ¢ become total, physically measurable quantities. Thus

for a nominal no-wind, gravity turn trajectory the equations become:

Trim EqQuations

T — Xy —Mg cos 6 = My (A-27)
g sin 6 = —QVy (A-28)
. Vy sin 6

Q = —(6 + ——_BF—) (A—29)
Rip = Vy cos 6 (A-30)

Perturbation Equations
X = 0 (A-31)

CT .o

(T-%,)9 + 5 B + Nygoo = MZ (A-32)
lopllos + 1g = 8 = I9 (a-33)
o = g+i=2 (A-34)
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where the Q and Q terms have been omitted from the perturbation equations

as discussed above.
The perturbation equations could also be obtained by:

1. Assuming the XYZ coordinates to be inertial

2. Suppressing the X degree of freedom

5. Omitting the gravity force, Mg

L. Adding an artificial gravity force, —gMl,, where

E = (T-X3)/M

The approach indicated by these last four steps is used in Appendix B to
derive the equations of motion for an elastic booster with fuel slosh.
The above approach could be modified for & nominal trajectory other than
no-wind, gravity turn, but it would then be necessary to add an artificial

lateral gravity force due to the nonzero ay, Py, and Q.
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APPENDIX B

DERIVATION OF PERTURBATION EQUATIONS FOR
FLEXIBLE BOOSTER WITE FUEL SLOSH

The perturbation equations of motion for a flexible booster wherein
the effects of fuel slosh and rocket engine inertial reaction forces are
included are fearsome things to derive unless energy methods (via
Iagrange's equation) are employed. Even then, derivation is somewhat

tedious.

To begin, Iagrange's equation is:

dit(s;i)—aa;i+§§i+§i = Q , i = 1., 2, +++, n (B-1)
The q; are the generalized coordinates of the system under analysis. We
assume that any displacement of the system can be expressed in terms of
g set of n discrete generalized coordinates. The generalized forces, Q;,
are obtained from the expression for the virtual work resulting when
external forces act through a virtual displacement, Sqi, in each of the

generalized coordinate directions.

n
BWe = 2 Qidqgy (B-2)
i=1

T is the kinetic energy of the system (with respect to inertial space),
V is the potential energy stored in the system, and D is a dissipation
function which accounts for internal damping in the system. Throughout
this analysis, "frozen" values of all system parameters are employed to

evaluate short term dynamic response and all angles except 9 are assumed
small.

Degrees of freedom, or generalized coordinates, used are Z, o, Zs 3>

Ny, B, and By. All symbols are defined in the list of symbols.
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1. KINETIC ENERGY

We shall now proceed to write the expressions for the kinetic energy
for all components of the total system. The kinetic energy of the empty

airframe, without propellants or rocket engines, is (see Fig. B-1):
2

1 t [ . = -
T, = & fMA[Z + (x—%eg)d + 2 Yi(x)-qi] dx
L i=1

+ 1? ./L‘IA[CP + é Y:;_(x)ﬁj]2 dx  (B-3)

Using the spring mass analogy for fuel slosh, the kinetic energy of the
propellant in the jth tank is (see Fig. B-2):

o 2
1 : . .
Te; = 7 Moj [Z t 1o+ :Lz=:1 Yi (xoj)rli]

o0 2
1 . ' .
+ = IoJ- [cp + E‘ Yi (xoj) ni]

) 2
1 S . . .
o5 s [Z *lg st 2 Yi(xsj>ﬂi + Zsj] (B-4)

i=1

With the aid of Fig. B-3 we see that the kinetic energy of the rocket

engines is
1 : - -1
Tp = - CME[Z + J_Bcb + 2:1 Yi(xﬁ)ﬁi - lE\II]
i=
+ 1? CIECG¢2 + _;_ (F—C)ME[i + (g~-1g)o + 21 Y3 (xg) My
i=
© 2 1 © . 2
SETD PR C TN RN CEUEN [ > {CRIN e
i=1 CG i=1

where ¥ is given by:

Vo= o+ 21 Y (xg)ny + B (8-6)
1=
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Figure B-1. Elastic Axis
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Figure B-2.

Propellant Model for jth Tank
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Figure B-3. Engine Model
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Upon substituting the expression for & into the expression for Ty, we

obtain:
1 . o0 © . 2
g - - cME[z + (-390 + X wlg)i ~ 35 5 Yl - 1Es]
i= i=

0 2
1 . 1 . .
+ 5 CIECG[CP + 12 Yi(xﬁ)ni + B]

o o 2
1 hd o . 1 .
+ = (F—C)ME[Z + (g -1g)$ + 21 Yi(xg); — 1g 21 Yi(xﬁ)ni]
1= 1=
1 - 2
The kinetic energy of the total system is given by the sum of Tp, E:Tsj,
and Tg. J

2. POTENTIAL ENERGY

We shall now write the expression for the potential energy for all
components of the total system. From Fig. B-4 we see that the potential
energy due to the deflection of the empty airframe in the g acceleration

field is:*

Vo = 'fLéMA[(X—xCG) 923 + CP:_LZ=1 Yi(x)ﬂi] dx (B-8)

Potential energy is also stored in the structure because of the elastic

deformations. This potential energy is:

o= E 5 [ e« ruPw)] acof of (2-9)
i=

[o8]
*Note that the displacement P Y;(x)n; is defined to be perpendicular
to the x axis. i=1
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where M' and I' are, respectively, the rumning total mass and running
total section moment of inertia for the system. Since the generalized

msses of the bending modes are given by

M = /; [M’Y?(x) + I'Yi'g(x)] dx (B-10)

Eg. B-9 can be written as

Vg = 5 21 Mg (B-11)
i=
X
|
_ | /AX L x-x o) ¢
g
Acceleration —¢ /_t__l_
Field o
i=l
7 -
.ZIYi(")"?i
i
—o 7
Xce

Figure B-4. Deflection of Empty Airframe in an Acceleration Field
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We next consider the potential energy of the jth propellant tank.

From Fig. B-5 we see that the potential energy is:

1 2 I
Ve; = @ keyZs; — g BMgyle 0
- M Yi(xg.\ns| — &M s (%) N4
&Mg ZSJ-[(P + 12231 1(XSJ)T]1} &Ms 59 1221 1(XSJ)711
1 _ _ [00]
i=1
X o
_};' Y; (xj)m;
Z /l- oo
X -¢_Z% Yilxsj)m;
k._;J =
L& / 1L
7
Acceleration f
Field 2
g ?"/' 1 2
Msj -2 15] ¢
1sj - J
4
- g+ E Yt
i=
2 Yi("si)"?i
izl

Figure B-5. Deflection of Propellant Mass in an Accelerstion Field
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However,

2
ko, = M,.0wg. B-1
53 53983 (B-13)
Then,

1 2 2 1 -
Vs. = —= w5.25, — = BMg.lg. - gMs.z2g. + Y. Nn.
5j ) MsJ 55783 2 8% sJ<P2 &% sJ[CP 1§ 1(XSJ)T]1]

- &Ms.9 55 Y‘(Xs-)ﬂ- - & BMy .10 .07
T im TR 2 TR
o0

- 8loy® 12_31 Y1 (xog) 1y (B-1L)

The final potential energy contribution is that from the engines,

which can be written:

1 2 1 - - —
Vg = & CKL(B—Ba)” — & &MMplgd® — EFMRo Z] ¥y (xg)ny
1=
: 5 : o0 2
+ 5 BCMplgl® + 5 B(F-C)Mplg|e + 2. Yi(xg)ny (B-15)
i=1

The first term on the right side of Eg. B-15 is the potential energy
stored in the spring connecting B and By (actuatornozzle compliance).
The second and third terms are due to the motion of the gimbal point in
the X direction (see Fig. B-4). The last two terms account for the
relative X motions between the gimbal point and the engine cg's. Sub-

stituting the identity

= = (B-16)
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and the definition of ¥, Eq. B-6, into Eq. B-15 gives us
1 2 1 = 2
Vg = 5 CIpefi(B—Ba)° — — EMMgleo

[+ r o 2
- EMMgo 21 Yi(xg)ng + & CMglgle + 3 ¥i(xg)ny + B]
i= | i=1

© 12
+ 1? E(F—C)Mglglo + X Y:-'L(xs)niJ (B-17)
i3

The total potential energy is Vy + Vg + 3, Vsy + Vg
J

3. DISSIPATION FUNCTIONS

The dissipation functions for the various components can be simply

written in terms of damping ratios and natural frequencies, l.e.,

Dy = —12—2 My (2¢;) 72 (B-18)
1

DSj = 'T;— MSJCDSJ- (2§SJ) é‘g‘] (B-1 9)

Dg = 1? CIpwg (2¢g) B2 (B-20)

For the engines the damping forces are assumed to be in the gimbals.
L. GENERALIZED FORCES

Finally, we shall write the expressions for the generalized forces
due to thrust and aerodynamic terms. Aerodynamic contributions to the
generalized forces are assumed proportional to local angle of attack of

the booster airframe. The expression for the local angle of attack is:

[+ ]

- t 1 e . *
a(x) = ¢+ B Yy - gll + (xmxeg)d + T Vilx)iy = w| (8-21)
i=1 . 1

i=
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From Fig. B-6 we see that the Z generalized force is:
T =
Q = T[‘P + Z Yi(xg)ﬂi + B]
: i=1
T o~
+ [(F—C) - xa] [cp + 12}1 Yi(xﬁ)ni]

oC
+ g8 f %o a(x) dx
i aX

CT - t Z.a W
= B 7 ('I'*Xa)qu"'iz::1 Yi(XB)TIi] + NC('(CP_V_N--’_V_N)

Ne ) ﬁ
D - . L _
A 1221 (Nniqi——Nni VN) (B-22)
XA X
¢*
- /’Z:' 7317' -7
3 Yitxg)m, e
izl BT

g (negative
as shown)

i 3Cs,
qS 35 a(x)

(-1 L -]

Figure B-6. Generalized Forces
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where No = a8 f __a__z?_: (B-23)
L
0CZq,
Ny = qu; S (x—xpg) dx (B-2k)
Npy = quJ; S Yi(x) ax (B-25)
f 3Cz,
Nﬁi = gS 5 e Yi(x) dx (B-26)

From Fig. B-6 we also see that the ¢ generalized force is:

% = Tl X oveeng] + [e-0 Foxfn X ovieen
00 BCZGI
- @-%) B vy o fL " (x g )l
CT o~ o
= ST + (T-Ya)lg 12:31 i (xg)ny
< z
- (1-%) X vibghy + Ma(cp+ VN)
. 00 ﬁi
- MCPV% + i§ [Mqi'qi—Mﬁi -\Tﬁ] (B-27)
where
My = q_SJ-L = (X XCG) dx (B'28)
3z,
Mp = f—a— (x~xcg)? dx (B-29)
L
3z,
iy = 95 [ S Gemsog)vito) ax (3-30)
Mﬂi = j;‘—a— X - XCG)Yi(X) dx (B-31)
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There is no Zs 5 generalized force. The n; generalized force is, again

referring to Fig. B-6,

o v . T =~
U, = F 21 Y5 (xg)ny + 5]Yi(xﬁ) + [(F—C)? "Xani(xﬁ) 2 Yi(xg)ny
i= i=1
oc
+ gS J. Za Y (x)a(x) ax
L Bx
=~ y
= %Yi(xg)s + (T=Xg)¥i(xp) E Yi(xg)ng + Nﬁi(cwva)
I _ oy i
M'r]i Vi + lgl Nnik“k Nnik VN (B-32)
If preferred, the underlined term may be
omitted per the discussion of page 10.
where J‘ 502@ '
Nnik = S 5 S ¥ ()Y (x) ax (B-33)
J’ 502@
Ny S — Y3 Y dx -
nik ot L % :1_(X) k(x) (B 51*)

The p and By generalized forces are zero.
5. GENERALIZED MASSES AND ORTHOGONALITY REILATIONSHIPS

In applying Iagrange's equation to the flexible booster, great
simplifications result from the use of generalized masses and the orthogo-
nality relationships given below. The total system mass, or Z generalized
mss, is:

M = j];MAd.x +§:(Moj +Msj) + FMp (B-35)
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The totael system moment of inertia, or ¢ generalized mass, is:
I f [MA(X xc(}) + IA] dx + z: (Mo lO.j + Ioj + Msjlsj)
+ FME(lB_lE)g + FlEy, (B-36)
The ith bending (n;) generalized mass is:
M = f [MAY%(X) + IAYi2(x)]dx
L
2 12 2
+ zj:[:MOJYi (XOJ) + IOJ-Yi (Xoj) + MSle (XSJ-)]
v gy (xg) ~ 193]+ FIa Y12 () (8-37)
B 1'% ccti g

From the definition of xn; &5 the system center of gravity when 8

and Zs 3 are constrained to zero, we have:
L J

From the orthogonality of rigid-body translation to the ith bending mode,
or the requirement that the bending mode does not move the system CG, we
have

j; MY, (%) dx + ZJ: [Moni (xoj) + Mg ¥y (xsj)]

+ g(v(xg) — ¥i(xg)] = 0 (B-39)

The orthogonality of rigld-body rotation to the ith bending mode gives:

68



f [MA(x—xCG)Yi(x) + Ijgi(x)] dx
L
* Z[ Moslos¥1 (Xog) + Tos¥i (tog) + Msylsy¥s (XSJ')]
+ Pg(ls — 1n) [YiGe) — 1¥iCxp)| + FIgYi(xg) = 0 (B-}O)

Finally, the orthogonality of the ith bending mode to the kth bending

mode gives:
f [MAY:-L(X) Y (x) + IAY:;_(X)Y}'((X)] dx
L

* }5' [MOJYi (*o3) Y fxoy) + Tos¥i (xoy) Yic (xo5) + Msj¥s (XSJ)YR(XSJ)]

+ FME[Yi(xB) - 1EYj'_(xB)][Yk(XB) - 1EY1;(xB)]
+ Flg Yi(xp)¥i(xg) = 0 (B-W1)
where i ¥ k

§. EFFECTS OF OFF-ILASTIC-AXIS ENGINE LOCATIONS

The above development has considered all engines to be located on the
elastic axis. The effects of off-elastic-axis locations are generally
small, but may be accounted for by modifying the generalized mass and
orthogonality conditions to include the change in mass distribution. For
example, the moment of inertia is increased by the product of the mass of
the engines times the square of their distance from the elastic axis. The
net result is a slight numerical change in the moment of inertia and the
bending mode generalized me.sses, but no change in the form of the equations

of motion.
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7. SUMMARY OF EQUATIONS OF MOTION

In applying lagrange's equation to the flexible booster, the kinetic
energy terms become inertial reaction forces in the equations of motion.
Potential energy terms become forces developed in distributed or lumped
springs, or become forces developed by deforming the system in an accel-
eration field. Dissipation function terms become viscous damping forces.
Generalized forces are the components in the generalized coordinate
directions of the thrust and aerodynamic forces and moments applied to
the total system.

The resultant equations of motion are summarized below. The origin
of each term 1s easlly traced to 1ts causal physical effects viae the
coefficients and the diagrams used for the derivation of the equations
of motion.

Z Force EQuation

MZ +ZMSJ'Z'SJ - CMplgf - (T—Xa)[cp+ _E1Yi'(xﬁ)ﬂi]
J =

cT z NP e o) o
-Zp - (cp+ VN) + j§ (Nni”i Nni-V—N) = 0 (B-42)

¢ Moment Equation

I + EMleSJ.ZSJ. + {—MElElﬁ+IE; gy sts
J J

+ BCMglgp + (T-Xa)[—lﬁiz:1 Yi(xg)ny + Z% Yi(xﬁ)'flj_]
= i=

%lﬁB_M‘I(‘P“L ) MtPVN

00

- X (Mnini—Mﬁi 3—;) = 0 (B-43)

i=1

*The generslized mass and orthogonality relationships of Egs. B-%
through B-41 have been used to greatly simplify the resultant equations.
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Jth 8loshing Mode Equation

.o . 2 . . -
ey ¥ 2§SJ_<»SJ.ZSJ. + wsjzsj + Z + 1@ + N Yi(xsj)ni

— gy - B f yi'(xsj)ni = 0 (B-4b)

ith Bending Mode Equation

. . CT
Mi(ﬂi + 20 w4n3 + ﬂ)?mi) - F Yi(xg)p

+ BCMplpYi(xg)p + C[IEYi(Xs) - MElEYi(Xa)]é

+ ZMSJYi(xSJ)'z'SJ. - éZMsij'_(xsj)zsj
J J

+ EMMElEYi(xg) 2 Yi(xg)ng; — (T—Xa)Yi(xg) 22 Y3 (xg)ny
i=1 i

i=1

w— 2 o) - Nk
— : + + My, = — N - N =
Nni<$ N ) N1 Ty ég% ( N3k Tk Mix Vy )

0 (B-45)

If preferred, the underlined term may be
omitted per the discussion of page 10.

Ingine Deflection Equation

B+ 2tpwpB  + w%ﬁ - w%ﬁa

00 1pT.. =
 §o 21 ¥y (xg)f; - EIE—E'[Z + 1%+ 21 3 (xp) )
i= 1=

Mgl ©
+ ?EE é[CP + 2 ¥ (xg)ny + B]
i=1

0 (B-L6
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Angular Motion Bensed by a Gyro

g = 9+ 2 Yi(xg)ng - (B-47)
i1

Lateral Acceleration Sensed by an Accelerometer

Zn o= Z o+ 1p% + 2 Yi(xa)fiy - é[w + ) Yi(xA)ni] (B-48)
i=1 i=1

Angle of Attack Bensed by a Forward Vane

For vane on a boom of length ly which is attached to the booster at xg:

lV N — 1 .

ay = alxg) - vﬁ[cp + Z] Yi(xa)ni] (B-%9)
1=

Note that the above equations are for the inputs to the various sensors;

that is, nonideal sensor effects are not included.
8. ACTUATOR EQUATION

The above equations consider the deflection of the control engines
in terms of the actual engine angle, B, and the output of the actuator, Bg.
To fully complete the equations an additional expression is required to
relate the commanded engine angle, B,, with p and By;. The following

approximtes the actuator by a first-order lag.

The flow rate into the actuator, Q, is given by:

Q = Ki(Bo—By) — K3 o (B-50)
where Ky = actuator open-loop gain
Be = commanded B
f = load on actuator
K5 = +valve pressure feedback gain
A = effective actuator area
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An alternate expression for the flow rate is obtained from volumetric
considerations.

Q =({x é,ﬁ%) (B-51)
where Ko = effective hydraulic spring constant
The actuator load is given by:
f = Ki(Ba — B) (B-52)

where Ky, = effective spring constant of
Bg to P compliance

Combining the above gives the final actuator equation:

K:\. K AKy, . K
A(1 +%)Ba + (K1 +_—‘5Alﬁ‘)63 - ——KBI:'B - %’B = K]Bc (B'55)
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AFPPENDIX C
APPROXIMATIONS FOR RIGID-BODY POLES

The complete equations of motion can be written in matrix form as

[a] =} = {3} (c-1)

where [A] represents the matrix of stability derivatives

1" "

and "s" terms
represents the column matrix of coordinates

{x}
{6} represents the column matrix of inputs

It will be assumed that two rigid-body equations of motion are represented
by the first two rows in the matrices of Eq. C-1. The matrices can then
be partitioned so that the coordinates for the rigid-body degrees of
freedom, xq1, and the coordinates for the nonrigid-body degrees of free-

dom, xp, are in separate partitions, as shown in Eg. C-2 (Ref. 9).
—_—— -V - J__ (c-2)

Expanding Eq. C-2 gives the rigid-body equations

_{51} (C-3)

[a ] {=}  + [82] {x2}

and the "elastic mode" equations

[a5] b+ [A]{xe} = {2} (c-4)

Solving Eq. C-4 for {xg} gives

{x} = [Au]_1[{62} - [a5] {x} (c-5)
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which can now be substituted into Eg. C-3 to eliminate the elastic mode
coordinates from the rigid-body equations. Making this substitution and

rearranging terms gives

[[A1]—[Az][Alr]_1[A5]]{x1} = {8} - [Ae][%]_1 {so}  (c-6)

Equation C-6 is the desired form of the rigid-body equations of motion.
As a result of eliminating the elastic mode coordinates, the stability
derivatives [A1 ] are seen to be modified by the aeroelastic correction

matrix

[a] = [o][a]7'[25] (c-7)

The aeroelastic contribution is a direct result of the coupling

among the various degrees of freedom. The coupling that influences the
rigid-body mode characteristics is due primarily to aercdynamic loads
created by the various "elastic' effects. Because the slosh degrees of
freedom do not directly affect the aerodynamic loads on the booster, it
is assumed that the slosh equations may be neglected. Similarly, because
the engine degrees of freedom have a negligible effect on the aerodynamic
loads, it is assumed that the engine equations may also be neglected.

This leaves the rigid-body and body-bending equations to be considered.

For practical reasons a quasi-static correction is desired. To
achieve this, the derivatives of the bending mode coordinates in the
rigid-body equations are neglected, leaving only the static deflection
terms to add to the rigid-body terms. This has been found to be a valid
simplification when only rigid-body modes are of interest (Refs. 9, 10)

1" 1"

and is effected by discarding the "s" terms in [Ag] and [Au]. It is
pointed out that although it is a virtual necessity to neglect the "s"
terms in [Ag] and [AM] at this point in the derivation (they would
later be found to be unimportant terms if they were retained), to further
simplify the computations it is assumed that the "s" terms in [AB] can
also be neglected. These assumptions will be validated by the numerical

results shortly.
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With the "s" terms neglected in [AQ:], [A5], and [Ah]: the amerocelastic
correction metrix (Eq. C-7) is simply a matrix of constants. It has been
found that the small off-diagonal terms of [Ah-]: which represent cross-

coupling among the bending modes, can be neglected. Then the correction

mtrix can be written:

' Yl ! N2
&1 (p) — “BY2(%p) — 5f

<y, + 8M[Y7 () —1p¥{ (xg)]  Mny + BM[Y2(x5) - 15¥5(%p) ]
I

b

——'l - —
i _2 o N Ny
®1 My Vy M
Ny —N
2 up fio
x 0 ®o X ﬁéﬁﬁ —EE_
| J n .
i N:. Np. N N i
n -t n M4 -1 1
- X v;ﬁ[gYi(xB) + ] % i) .
1 VNG 1
= Ni. N:
i - U -
—s { M. + 2M|Y(xp) - ~Mn. + aM|Yi(x3)
ZIMiVNo‘?i{ 0y + &MY (xg Zmiﬁf ng + @M[¥s(xg
- 264 (xp)] - 16¥i(xp)]|
L and

(c-8)
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Comparing Eg. C-8 with [A1], given below, we see that the aerocelastic

correctlons amount to changes in the aerodynamic derivatives Ng and Mq.

[~ |

Ne

+E‘V§

Ivy

Ne _ Ny,
MVy M
. (c-9)
240 M
IVy I
.

The corrected rigid-body matrix can then be written as

where

=

foge

Ng i}
._Q.S_.g__a'
MVy
M-
s + =2 5 —
vy

[éMYi(xﬁ) + Nﬂi]

5 %Mnl + éM[lBYj'_(XB

(c-10)

(c-11)

) - Yileg)] | (c-12)

To illustrate the magnitude of the corrections, let us consider
Model Vehicle No. 2 at the Max Q flight condition.

Considering the four

bending modes used for Model Vehicle No. 2, the various terms of Eq. C-11

and Eq. C-12 would be:

Ny,

My

(1.4681 =0.1962—0.0201 —0.0415 + 0.0056) x 10° kg (C-13)

(17.48 + 7.79 + 0.1% + 1.89 + 0.07) x 10 kg-m

(C-14)

From Eqs. C-13% and C-14 we see that the most important aeroelastic cor-

rection is a substantial increase in My (static instability is increase”
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There is also an appreciable correction to Ng. Por both derivatives the
ma jor contribution is from the first bending mode and this term is more
than four times the next largest one, which comes from the third bending
mode. In subsequent numerical evaluations only the effects of the first

bending mode on Ng and Mg will be included.

The approximate characteristic equation for the rigid-body roots is

obtained directly from Eq. C-10:

'K1| = 50+ se(EEL+-¥é-)+-s(%Nhﬂ+ﬁmM@—_N¢ﬁa)+ g 3&& = 0 (c-15)

I MIVE & Tvy
The rigid-body roots can be found by numerically factoring the cubic of

Eq. C-15; however, literal approximate factors can also be derived.

Equation C-15 can be written as follows:

|5 | = (s+ps) (s +g,) (5 +P0y)

= gl48°
= B7+s (PZ +Pq).| + Pq)e) + S(Pzpcp.l + Pchpa"' P(p1pcp2 )"‘ b, p(p.]Pcpz

(c-16)

For a statically stable vehicle (E@ < 0) the two real ¢ roots generally
combine into a complex pair. In that case it is simpler to substitute

Loy = Py, * Poy, (c-17)
2 _
®p = PoPo, (c-18)

into Eq. C-16. Usually |p¢1p¢2| >> Ipz(p¢1-+p¢2)| or for a complex pair

Wep >> 2C¢pz , 80 that p, can be approximated by the ratio of the last
two coefficients of Eq. C-15, i.e.,
: Mo
. & Tvy
Py = = (C-19)
My, , Tl — Nl
T MLV



Since it is generally true that
o > [l

Eq. C-19 may be further simplified to

Pz = Yy (C-20)
Equating the remaining terms of Egs. C-15 and C-16, we find
2 N
Pp, t P éﬁtp—+———pz
Ly P2 IVy Mvy
or — (c-21)
. Mg Ng, g
ST BRI =Rl
Ivy MvVy Vi
P@1P@2 ;ﬁa
or = — (c-22)
I
2
W
@

For a statically unstable vehicle (ﬁ& > 0) a further simplification for
the @ roots results if

i.e.,

(c-23)
. l’ﬂh‘ 1 Mé Na g
p(pg = —':E— + ?(ﬂ + WN + VN-) (C—2’+)
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Using the Model Vehicle No. 2 dynamic characteristics, the rigid-body
poles obtained from the approximations derived above are compared, in
Table C-I, with the exact values from the 11-by-11 matrix of Fig. 3.

This comparison illustrates three important points:

e Adequate simple approximations for the rigid-body roots are
available.

e During periods of high dynamic pressure, the aerocelastic
correction can greatly improve the accuracy.

e When the conditions of validity are satisfied, the literal
factors give adequate results. The relatively large errors
for burnout are because wy is only eight times I2C¢pzl.
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TABLE C-T

COMPARTSON OF EXACT AND APPROXIMATE RIGID-BODY ROOTS

CUBIC CUBIC
FLIGHT (EQ. C~15) . (EQ. C-15) —
EXACT  |APPROXIMATTON APPROXTMATION 2 L 2
Cgﬁgﬁ' PARAMETER VATUE wITHoUT | PRROR WITH ERROR™ pacromg3 | BRROR™ |
AEROELASTIC AEROETASTIC
CORRECTTON CORRECTTON!
Dy (sec_1)
Lift-off | py (sec™) NA NA NA NA NA
-
by, (sec)
D, (sec') | —0.04202 | —0.04288 2.0 | —0.0k202 o | —o.onou8 | —3.7
Mex Q| Do, (sec') | —0.2786 —0.2178 2 —0.2730 | —2.0 | =0.2769 | -0.6
P, (sec™) | 0.364k 0.2017 | =17 0. 3547 2.7 | 0.371 | -2.0
p,  (sec ') | —0.01428 | —0.01412 | —1.1 ~0.01631 | 1k.2
¢ 0.176 0.184 0.228
Burnout P NA NA
by (rad/sec) | 0.00717 0.00711 -0.8 0.00820 | 1h.h
wp (rad/sec) 0.04073 0.03866 5.1 0.03597 | -11.7

1

Aeroelastic correction is applied only at Max Q;

2Error = [(Approxinate—Emct)/Exact]x 100.

3

th was assumed zero gt LO and BO.

Literal factors are Eq. C-20 and Egs. C-21, C-22 (BO), or C-23, C-24 (Max Q).



APPENDIX D
APPROXIMATIONS FOR SLOBH AND BENDING MODE POLES

As a starting point for the examination of slosh and bending modes
we will compare the exact and the uncoupled solutions for the example
vehicle. Table D-~I summarizes the values of the slosh and bending modes
as obtained from various types of approximations at each of the threel
flight conditions. ZFocusing attention on the first three columns, the
first column lists the "exact" values — the roots obtained from the com-
plete 11-degree-of-freedom matrix as given in Pig. 3. The "uncoupled"
values (second column) include no coupling effects. The "diagonal"
values (third column) include all terms in the 11-by-11 principal diagonal
wherein the slosh mode freguencies are identical to the uncoupled values,

but bending modes include self-coupling terms,* i.e.,

2, [ My 2
S + gi(bi-*-}\/[i—v:'is-*-wi

+ ﬁ;[—Nnii + EMMglpYi®(xg) — éMYi(xB)Yi(XB)] = 2 + 2fiays + @5 (D-1)

Examination of Table D-I shows that the diagonal terms generally give
adequate approximations of the damping ratios, but that the frequencies can
have as much as a 10 percent error. In other words, the cross-couplings
primarily affect the modal frequencies rather than the dampings. It is
also noted that the second, third, and fourth bending mode frequencies
are always greater than the slosh mode frequencies, and that the diagonal

approximgtions for these bending frequencies are always low.

The next level of approximation is to add the cross-coupling of the
slosh modes through the rigid-body modes or, in other words, to add a
dynamic correction to the slosh modes for the rigid-body modes. This

gives us the following approximate equations of motion:

*The underlined term may be omitted as discussed on page 10.
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Equation D-2 can be reduced to the following characteristic equation for the

coupled slosh modes:

2
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(D-3

The characteristic roots obtained from Eq. D~% are listed in Table D-I under the

heading "Three Slosh."
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TABLE D-I
COMPARISON OF EXACT AND APPROXIMATE ROOTS

(a) Iift-Off

THREE SLOSH|THREE SLOSH|THREE SLOSH| ppnDING
MODE EXACT UNCOUPLED | DIAGONAL |THREE SLOSH + 1, () |+ n1(n2,n3) (STOSH)
First slosh
QP 0.0045 0.0050 0.0050 0.0048 0.0044 0.0043 0.0045
D cvennnnns 2.030 2.13%6 2.13%6 2.209 2.000 2.008 2.018
® error ... 5.2 5.2 8.8 —1.5 -1.1 -0.6
Second slosh
£ oveneinnns 0.0050 0.0050 0.0050 0.0050 0.0050 0.0051 0.0050
W eveavanas 2.132 2.136 2.13%6 2.126 2.145 2.115 2.136
®» error ... 0.2 0.2 0.3 0.6 0.8 0.2
Third slosh
E e 0.0052 0.0050 0.0050 0.0055 0.0052 0.0051 0.0051
W cevrennn 2.221 2.1%6 2.13%6 2.228 2.213 2.23%6 2.194
o error ... -3.8 -3.8 0.3 ~0.k 0.7 -1.2
First bending
£ vvvnnnnn 0.0054 0.0050 0.0046 0.0057 0.0057 0.0055
W voveneons 2.607 2.156 2.350 2.700 2.684 2.608
o error ... —17.3 —-9.8 3.6 3.0 0.04
Second bending
E ovvvnnnnns 0.0048 0.0050 0.0049 0.0049
W evvrranns 5.289 5.062 5.185 - 5.257
W error ... 4.3 -2.0 . —0.6
Third bending ‘ ‘
E vevnnnnnn 0.00k49 0.0050 0.0050 | 0.0051
D eeneennen 9.188 8.783 8,872 ' . 9.151
o error ... 4.4 ~3.4 L =0.h
Fourth bending
QR 0.0050 0.0050 0.0050 ‘ 0.0050
W seveneens 12.58 12.3%6 12,39 ‘ 12.54
W error ... =1.7 -1.5 | ~0.3

® in rad/sec ; error = [(approximte—exact)/exact]x 100
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Table D-T (Continued)

(b) Max Q
THREE SLOSH|THREE SIOSH| BENDING
MODE EXACT UNCOUPLED DIAGONAL |THREE SLOSH + + ﬂ1(ﬂ2) (SLOSH)
First slosh
€ covinnnt 0.0050 0.0050 0.0050 0.0050 0.0051 0.0050
W orevonsns 2.750 2.765 2,765 2,776 2777 2.776
® error ... 0.6 0.6 1.0 1.0 1.0 |
Second slosh |
£ covevnnnn 0.0057 0.0050 0.0050 0.0055 0.0054 0.0055
W eeenrnens 3,047 2.765 2,765 3,050 3.048 3.046
® error ... -9.,2 9.2 0.1 0.03 —0.03
Third slosh
Eovennnnnn 0.0087 0.0050 0.0050 0.0052 0.0092 0.0086
A +evononns 3.131 2.827 . 2.827 2.882 3.184 3.153
o error ... -9.7 9.7 8.0 1.7 0.7
First bending
€ vevnnnnn 0.0141 0.0050 0.0159 0.0125 0.0126
W evrnaneas 2.234 2.319 2.407 2.268 2.243
® error ... 3.8 7.8 1.5 0.4
Second bending
b oveeannnn 0.0084 0.0050 0.0088 0.0091
W cvvnvennn 6.022 5.645 5.739 5.921
W error ... 6.3 4.7 -1.7
Third bending
£ covvnnnnn 0.00T1 0.0050 0.0070 0.0075
W evernenns 9.94k4 9.184 9.299 9.886
W error ... 7.6 —6.5 0.6
Fourth bending
£ vevennnnn 0.0064 0.0050 0.0068 0.0070
W ceveeenas 12.89 12.50 12.45 12.72
m error ... -3.0 3.4 -1.3
o in rad/sec ; error = Ikapproximate—exact)/exact]x 100
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Table D-I (Concluded)

(¢) Burnout

THREE SLOSH|THREE SLOSH| ppnorvov. |THIRD SLOSH
MODE EXACT UNCOUPLED | DIAGONAL |THREE SIOSH 1, + 1, (ny) (stosh) | + my * o
First slosh
E ovvvin 0.0048 0.0050 0.0050 0.0050 0.0049 0.0049
W eeernnann 3.680 3.581 3.581 3.605 3.692 3.683
@ error ... —2.7 —2.7 —2.0 0.3 0.1
Second slosh
E oo 0.0043 0.0050 0.0050 0.0051 0.0050 0.0051
W evvnennnn L.o27 3.770 3.770 3.815 L.076 4.033
» error ... —-6.4 6.4 5.3 1.2 0.2
Third slosh
e 0.0051 0.0050 0.0050 0.0053 0.0054 0.0051 0.0051
W veveanenn 4,951 h.712 L.712 4.980 5.059 5.053 Lotk
® error ... 4.8 4.8 0.6 2.2 2.1 0.7
First bending
E e 0.0039 0.0050 0.0039 0.0042 0.0042 0.0041
W oeernenens 3.409 2.915 3.727 3. 42k 3,401 3.607
w error ... -1k4.5 9.3 0.4 —0.2 5.8
Second bending ' |
o 0.0028 0.0050 0.0047 | 0.0049 |  0.0050
W erenenenn 7.419 6.592 6.951 7.0 | T7.318
® error ... -11.1 —6.3 | .2 ~1.k
Third bending i j
|G 0.00k46 0.0050 0.0050 ! 0.0051
B vveeennns 11.86 1.7 P 1.TT 11.63
W error ... —1.3 i —0.8 ! ‘ -1.
Fourth bending | ‘ ‘
E oo, 0.0053 |  0.0050 0.0050 0.0050
W eonrnnnnn { 2h.99 2L.86 2k.90 . 25.01
w error ... | -0.5 1 0.k ' 0.1

w in rad/sec ; error = [(approximate—exact)/exact] x 100




For the three flight conditions, this relatively simple equation
gives the frequencies of two modes within 2 percent. The frequency for
the third mode has a sizable error. From the study of the MRR it would
appear that the primary source of this error is the coupling with the

first bending mode.

The principal source of slosh—bending coupling occurs through inertial
rather than aerodynamic or thrust terms. Consequently our next approxi-
mation is to solve for the three slosh and first bending modes simultane-

ously using the following characteristic equation:

52 Y, (XSB) = 0 (D-b)

Mg, ¥ (x51) , Mspty (xsg) , Mgt (x55> )

S S S
M'l M-l M‘l

where S5 is the 3-by-3 matrix of Eq. D-3. The characteristic roots obtained

from Eq. D-13% are listed in Table D-I under the heading "Three Slosh + n1.”

The addition of the first bending mode has greatly reduced frequency
errors in general, but a 3.6 percent error remains in the first bending
mode at 10. It was felt that this error was probably due to the effects
of higher bending modes. Therefore a static correction was applied to
the M equation for the effects of the second bending mode. This results

in the following characteristic equation:*

*In the body of the report the determinant is written with the fifth
row divided by ®2. This is done to avoid confusion in subsequent
expressions for e denominator lead coefficient.
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II =1 (XS1) ©
2
S5 : 5 Y1(xs2) 0
| seY-l (XSB) 0
| - 0 (p-5)
l —_——
M- Y4{x Mg Y9l 11X
S1 le 51)52 2};5 82)82 Mf 55)52:524_2&1&18_*_&? C12
I
Mg. Yo(x Mg Yolx Mg Yr(x
S1 52( 81)52 52M22( 52)52 55M22( 55)82 e mé
where cyj = M1—l —Nnij + QYE (xB)[FmElEYi'(xB) - MYi(xB)]} (D-6)

Equation D-5 can be reduced to a L4-by-4 determinant that is identical to
Eq. D-4 except for the last row, which becomes

[’“("51) G2 YZ(XSI)] o2 ¥1(xs) _ °1_é2 Yz(xse)] o2, [Y1("53) _ %2 Y2("55ﬂ ‘Hzﬁ

— 82 + 2 8 + -
@ My | 2] Mp a2 M 3w T My | o + 3 @3

The characteristic roots obtained from this equation are listed in Table D-T

under the heading "Three Slosh + 17(n2)-

Now there are only two frequency errors greater than 2 percent — the
third slosh mode at BO and the first bending mode at LO. The error in the
third slosh mode at BO will be discussed later. The error in the first
bending mode at 10 may be reduced by including a static correction for the
third bending mode. This is accomplished by adding a sixth row to the
5-by-5 determinant of Eq. D-5,

M Mg M
% Y5(x51) 52 -M—: Y3 (x32) 52 Mi; YB(XSB) 52 ez czp Eg
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and a sixth column,

2
0 0 0 c15 c25 @3
The characteristic roots obtained from this equation are listed in

Table D-Ia under the heading "Three Slosh + n1(qé, ”3)'"

With this correction the accuracy for all four modes at IO is very
good; maximum error is 1.2 percent. Thus 1t appears that, with the
exception of the third slosh at BO, accuracies on the order of 1 percent
or better can be obtained for the slcshing and first bending modes by
including only the inertial coupling terms and static corrections for

the higher bending modes.

Approximations for the second, third, and fourth bending modes are
obtained by adding a dynamic correction for the slosh modes. This cor-
rection is discussed in Section III-C. The resultant characteristic
equation (Eq. 23) gives the approximate roots listed in Table D-I under
the heading "Bending (Slosh)." Except for the second bending mode at BO,
the frequency errors are all less than 2 percent. The relatively poor
accuraty at BO for the second bending and third slosh is caused by the

small (50 percent) frequency separation of these modes.

The coupling between the third slosh mode and the second bending
mode at BO is also discussed in Section III-C. The approximstion derived
there (Eq. 25) includes the third slosh mass plus the first and second
bending modes with a dynamic correction for the rigid-body modes. Roots
obtained from this approximation are listed in Table D-Ic under "Third
Slosh + 7, + Np-" Note that this gives good results for the third slosh
and second bending modes, but that for the first bending mode we have to

use the "Three Slosh + n1(n2)" approximation.
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APPINDIX E
APPROXIMATIONS FOR ACTUATOR POLES

The coupled modes to be considered here are the first-order lag, Pg s
of the actuator and the second-order mode, ay, of the compliance in the
actuator—nozzle connection. As a first approximation we will neglect
the rigid-body and bending contributions to the engine deflection equa-
tions. This leaves the lower right 2-by-2 submatrix of the original

11-by-11, i.e.,

2 + 2Lpwgs + a)% + _l\iI% —a)% B
= 0 (E-1)
~AKp, K3KT, A(Ko +Xr,) K3KT,
s ——=—2 5+ Ky + = Ba
- -
which ylelds a cubic characteristic equation:
2
T 55 + EQECLE T + K-l + —A— S
K=K, 2 @Mply A(Ko+Kr)
+ —
+ [2§E@E(K] " ) + WA T Ko s
EMgly K=Kj,
2 v B
+ gk, I (K1 = = 0 (E-2)

In Eq. E-2 only g varies throughout the flight. Since the terms involving
g are quite small, this approximation gives roots which change slightly
with flight condition. The roots obtained from Eq. E-2 are compared with
the exact values from the complete 11-by-11 matrix in Table E-I under the
heading "Cubic." The worst errors occur at BO where the first-order lag
is off by U4 percent and the second-order frequency is off by 12 percent.
While these errors are relatively large compared to those obtained for
other modes, the approximations are probably satisfactory for preliminary

analyses (a more accurate approximation will be derived shortly).
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TABLE E-TI

ACCURACY OF ACTUATOR APPROXIMATIONS

FLIGHT CUBIC
CONDITTON PARAMETER EXACT CUBIC LITERAL (R, ni)
b, (sec) | 1k.56 [ 1h.66 | 1h.oh | 14.63
Ca, 0.098: | 0.0982 | 0.1028 | 0.0973
Lift-off ay (rad/sec) | L7.04 46.15 L7.09 b7.14
Py error¥ 0.7 ~3.6 0.5
4y error¥ -1.9 0.1 0.2
b, (sec') | 1k.52 14,66 14.04 14,62
ta, 0.0986 | 0.0980 | 0.1028 | 0.0967
Max Q ay, (rad/sec) | 47.53 46.18 47.09 Lh7.64
Pgy error* 1.0 -3.3 0.7
w, error¥ 2.8 ~0.9 0.2
b, (sec”') | 1k.1k 14.69 4.0k 14,52
Ea, 0.0979 0.0977 0.1028 0.0918
Burnout ay (rad/sec) | 52.50 46.26 47.09 53.39
P, error¥ 3.9 0.7 2.7
Wy error* —11.9 —10.3 1.7
*Brror = [(Approximate—Exact)/Exact] X 100

N




In general, the roots of Eq. E-2 may be approximated via the factoring
method of Appendix C; the real root is obtained from the ratio of the last

two coefficients. Dropping small terms, the literal expression becomes

. wfy Ky

Pyt %+ = & E-
E
The second-order then is approximated by
K

2 . ,2(_"0 -

Wy = (DE(KO +KL) (E )'l')
K=K, Ko K1

2laay = 20gop + (K1 TR )(A(KO +KL)) g

(E-5)

Il
N
ue
=]
b
+
jo

Note that the term containing g is among the smmll terms dropped, hence
the above values are independent of flight condition. The resulting
approximations are listed in Table E-I under the heading "Literal."

The fact that the maximum error obtained with these "approximations to
an approximtion" i1s less than that obtained from factoring the cubic

is purely coincidental.

A more accurate approximation is obtained for these modes by including
a dynamic correction for the rigid-body and bending modes. The procedure
is identical to that used in correcting the second to fourth bending modes
for the slosh masses. The dynamic correction changes only the upper left

element in Eq. E-1. It becomes

1

o | (Mg1g)? . (Ig—Mglyly)® N [IEYi'(X;s)”MElEYi(st)]2 .2
I M I E My
1
+ 2Lpups + wF + ey
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The approximate roots with these corrections are listed in Table E-I

under "Cubic (RB, ni).” The errors in p, and w, are greatly reduced.
Maximum errors still occur at BO, but are not only 2.7 and 1.7 percent

for p, and wg.

Obviously, conditions of validity for the application of Eqs. E-3
through E-5 involve the relative magnitudes of terms in the exact equa-
tions of motion. However, in general, w§?>> 28,030, which allows the
direct approximetion of roots via Eqs. E-3 through E-5. If this
inequality is not valid, the roots must be obtained by factoring Eq. E-2.

Further, Egs. E-3 through E-5 require the dynamic correction to be small:

< 1

¢ ) (1) (Ip - Mplplp)® £ [zevi () = Mg15¥s (p))”

Ig M I M

i

This inequality is not so general as is indicated by the effect the
dynamic correction has at BO. Note, however, that the mmjor contribution

of this correction is easily included in Eq. E-4 when appropriate, i.e.,

(E-6)

e = (K0+KL

: )[ cf §

1 2
(I"IEJ-E)‘2 N (IE_MElElg)Q +E [IEYi(XB) - MElEYj_(XB)]

IEl M I T Mj

Equation E-6 results in an error similar to that indicated in Table E-T

under "Cubic (RB, ni)."
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AFPENDIX F
APPROXIMATIONS FOR RIGID-BODY ZEROS

1. £ NUMERATOR

Considering only the Z and ¢ equations, the characteristic equation

for the ¢ zeros of the 7, numerator can be written as:

N . Ny

1 “MT/E% S —-g — _ﬁ-
= 0 (F-1)

Mig o M M

i S TTy ST I

or
1a(BM+ Ny ) — My
2 Ve — 7w P @ _

s= 4+ TV_N(MCP lBN(P)s + I = 0 (F-2)

In Eq. F-1 only the thrust portions of the static terms in the B column
have been retained, and the column has been normalized to unity on the
main diagonal. This normalization is done to avoid confusion in the

expressions for the numerator lead coefficients.

The approximate zeros obtained from Eq. F-1 are listed in Table F-I
under "Rigid Body." The maximum error is 1L4.6 percent. To reduce the
errors we add a static correction for the first bending mode using the
same technique employed for the denominator. The characteristic equa-
tion with the static correction is given in Section IV (Eq. 35). The
zeros obtained from it are listed in Table F-I under "Rigid Body (n1)."
The maximum error is now reduced to 5 percent, which is acceptable since
the closure of a load relief loop will be relatively insensitive to the

exact location of these zeros.
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RIGID-BODY ZEROS OF Z NUMERATOR

TABLE F-T

- - T ‘} —
ZERO RIGID
FLIGHT RIGID * *
EXACT ERROR BODY ERROR
Zg —0.8689 || —0.8055 —7.3 —0.8608 0.9
Lift-off 1
2, 0.8693 0.8055 7.3 0.8608 -1.0
Zqp -1.089 -1.058 2.8 -1.056 -3.0
Max Q 1
25 1.123 1.094 2.6 1.092 2.7
2 —2.126 —-1.857 —-12.7 —2.233% 5.0
Burnout Zgs, 2.128 1.857 —14.6 2.233 4.9
*Error = ‘kApproximate—Exact)/Exact]x 100
2. ¢ NUMERATOR

Considering only the z and ¢ equations, the characteristic equation

for the Z zero of the ¢ numerator is:

or

¢ 4 o I
MVy Mg
= 0 (F-
Mo,
Ty 1

(F-4)

At 10 both the complete eguations and Eq.
At Max Q the exact value is 0.01369 sec™!

F-L give a zero at the origin.
and the approximmtion is

0.01 390 sec“, an error of 1.5 percent. The error at BO is —2.4 percent,
the exact value is 0.780 x 10")+ sec_1, and the approximaetion is

0.762 x 10-& sec 1. This is more than adequate accuracy for this zero.
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3. 1y NUMERATOR

For the rigid-body zeros of the M4 numerator we start by including
the rigid-body modes and the static effects of the ith bending mode.

This gives a characteristic equation of

My 0 My, My
s s2 4+ % s ~ = ﬁﬁ;ﬂ;xﬁ = 0 (F-5)

Nay iy
M; Vy My

The zeros obtained from Eq. F-5 are listed® in Table F-II under "Rigid
Body." The results for the N numerator are satisfactory, but there are

large errors for the other numerators.

By analegy with the denominator approximetions, the next step is to
add a static correction for the first bending mode. This correction
adds a fourth row and column to Eq. F-5 (see Eg. 38, Section IV, for the
complete determinant). The zeros obtained with the correction are listed
in Table F-IIa under "Rigid Body (n1)." The errors at Max Q have been

greatly reduced. The largest one is now an acceptable 8 percent.

The static correction for the first bending mode has little effect
at BO because the aerodynsmic derivatives Mﬂi’ Nﬁi, and Nﬂi were assumed
zero in the exact solution. By process of elimination it appeared that
the only cause of the large errors at BO could be the third slosh mass
(the other two slosh masses are very smll at BO). Comsequently s static
correction for the third slosh mass was added to Eq. F-5 (see Eq. 39,

*As noted in Section IV, all three zeros are at the origin for the
I0 condition.
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Section IV).

s term in the Z column and the 1555

For this case we found that it was necessary to retain the

2 term in the ® column.

TABLE F-II

RIGID-BODY ZEROS OF n; NUMERATORS

o1

(a) Maximum Q
RIGID
NUMERATOR ZERO gxact | FI°IP |grror*}] BoDY |ERROR*
BODY
(W])
Z, (sec ') |-0.04112]—0.04097 | —0.4
n 2 (sec—1) —0.4714 ||—0.4609 | 2.2
Zg, (sec_1) 0.5683 || 0.52345 | 5.9
z, (sec ') |-0.04156)—0.04185| 0.7 |-0.04226| 1.7
n, 2, (sec™) |~0.2585 |l~0.2888 | 11.9 [—0.2541 | 1.8
Zg, (sec—1) 0.3118 || 0.3698 | 18.8 | 0.3365 7.9
z, (sec_1) —0.04098}|—0.0L092 | —0.1 [[-0.04093| —0.1
N3 Zep, (sec_1) —-0.4897 {|-0.4816 | —1.6 [|-0.k812 | 1.7
2, (sec_1) 0.5728 || 0.5542 | —=3.3 || 0.5538 | —=3.3
z, (sec ') |-0.04022{-0.03817| =5.0 |~0.03934| —2.2
U gcp 0.0297 || 0.1661 0.1169
@y (rad/sec) | 0.4061 || 0.2572 |-37.0 || 0.3877 | 4.5
*Error = kApproximate—Exact)/Exact]x 100




The results obtained with the slosh correction are listed in
Table F-IIb under "Rigid Body (zs5).” The maximum error has now been

reduced to 6 percent.

Table F-II (contd)

(b) Burnout

NUMERATOR ZERO EXACT ﬁig;? ERROR*| BODY |ERROR*

. (sec ') |-0.01411)-0.01412| 0.1 |-0.01413] 0.1

m o 0.18%8 || 0.18%7 0.18%3
Wy, (rad/sec) | 0.03864 0.03866| 0.1 || 0.03875| 0.3
]
z (sec”) |—0.01k23|—0.01412] 0.7 f~0.01421 ] —0.1

Mo Co 0.1786 | 0.1837 0.1796

ayp (rad/sec) | 0.0L0OOT[ 0.03866| —3.7 |f 0.03979{ ~0.7

z,  (sec ') |-0.014k8]|-0.01412| —2.5 [-0.01439] —0.6
0.1662 || 0.1837 0.170k4
ayp (rad/sec) | 0.04381| 0.02866|-11.7 | 0.04248] —3.0

2,  (sec ') |~0.0148uf-0.01412| 4.8 [-0.01469| —1.0

UM §® 0.1467 | 0.1837 0.1546

ay (rad/sec) | 0.05086f 0.03866 |-24.9 | 0.04780) —6.0

*Error = IkApproximate—Exact)/Exact]x 100
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APPENDIX G
APPROXIMATIONS FOR SLOSH AND FIRST BENDING ZEROS

1. ¢ NUMERATOR

The most complete approximation for the slosh and first bending zeros

starts with a 7-by-T7 determinant which includes:

Dynamic correction for Z
Control characteristics in ¢ column

Three slosh modes

First bending mode

] Static correction for second bending mode

This 7-by-7 determinant is given by:

M
. 3 212 Mo o 52 2 o 0
M M M M
1 .
o p Meilei o Pealer Peslss o Mao_& 82
I I I VN I I
2 2
1 ¢} 5 +2§s1“’s15+“€1 o] 0 ¥y (xg,) & ¢}
2 > = 0
1 0 0 2 +2l, o +m§2 0 Y1 (xg5) 6 0 (G-1)
2 2
[¢] +2 + Y 3 [¢)
1 0 0 5%+ 20g w5 56 U€5 1(xs5)
Mg, Y, (x
Yi(xa) M151Y'| (XS'|) MEQY'I (xsz) ) 1 ( 5}) 2 2 —_— -
0 M:jé W 52 —w 52 —% S s +2g1w1s+uf LIPS
o Ya(xg) Mg, Y2 (%5 o2 Mso¥2 (Xsp) &2 Ms 12 (X6 5) .2 . 2
M2 Mo M2 M 21

The reason for including the Mﬁ1, g1, and go terms 1s discussed in
Section IV.

To reduce the T-by-7 of Eq. G-1 to the 5-by-5 given in Section IV
(Eq. 40), the first two rows and columns of Eq. G-1 are eliminated. In
making this reduction the contributions of the Mﬁ1, 81> and g, terms to
the slosh rows were neglected. The Mﬁ1and g, contributions are neglected

since they are generally smaller than the Y1(xsj)52 terms. The go
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contributions are neglected since we only desire a second bending mode

correction to the first bending mode.

Before evaluating the complete 5-by-5 of Eq. 40, several simpler
approximations were tried. By considering the first three diagonal terms
we have the individual slosh zeros with dynamic corrections for the rigid-
body modes. The resulting zeros are listed in Table G-I under "Individual
Slosh." As might be expected, the results are unsatisfactory; frequency

errors are as large as 5 percent.

The next level of approximation was to include the slosh cross-coupling
by retaining the first three rows and columns of Eq. 40. The results are
listed in Table G-I under "Three Slosh." Errors as large as 5 percent

remain.

Next, the first bending mode was added by using the first four rows
and columns. The results, listed under "Three Slosh + n," were better,

but there were still several errors of 2.3 percent.

In the final approximation, the complete 5-by-5 determinant, a static
correction to the first bending mode for the second bending mode is
included. The results, listed under "Three slosh + ﬂ1(ﬂ2):" are quite

good. The only error greater than 1 percent is the third slosh zero at BO.

The problem with this zero is the same one we had with the pole; its
frequency is too close to that of the second bending mode. Consequently
we must have a separate BO approximation. This approximation includes the
third slosh, first and second bending modes with rigid-body dymamic correc-

tions, i.e., Eq. G-2.

Equation G-2 is reduced to the 3-by-3 of Eg. 42 by eliminating the
first two rows and columns. In the reduction the cij terms are dropped
and only the contributions of the g; terms to the diagonal elements are
retained. The reasons for these simplifications are: (a) The Yi(xs5)s2
terms are larger than the g; contributions, and (b) we are mainly inter-
ested in the coupling of the first and second bending modes with the third
slosh, not the first to second bending coupling. As shown in Table G-1,
under "Third Slosh + n, + ne," Eq. 42 gives very good results for all three
Zeros.
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TABIE G-I

SLOSH AND FIRST BENDING ZEROS OF ¢ NUMERATOR

THREE SLOSH | THREE S S
o EXACT INDIVIDUAL THREE SLOSH LOSH | THIRD SLOSH
SLOSH +n + (1]2) +n, +1,
First slosh
| 0.028 0.0050 0.0083 0.028 0.027
W oeerareverenas 2.140 2.147 2.136 2.140 2.139
W error ....... 0.4 -0.2 0 0
Second slosh
............. -0.018 0.0052 0.0017 -0.018 ~0.017
W torerorensene 2.140 2.185 2.136 2.145 2.140
W ErTOT cessess 2.1 -0.2 0.2 0
Third slosh
| S 0.0050 0.0052 0.0053 0.0049 0.0049
[ 2.1 2.188 2.253 2.145 2.145
W EYTOT +veonns 2.2 5.1 0.2 0.2
First bending
| S 0.0053 0.0055 0.0053
W oeevereenenans 2.417 2.424 2.425
W error ....... 0.3 0.3
L . . . N [V S L - e
(b) Mex Q
First slosh
N 0.0040 0.0050 -0.0085 0.0044 0.020
W torererannans 2.750 2.763 2,748 2.749 2.765
W EITOT ..eenns 0.5 0.1
Second slosh
| 0.0053 0.0051 0.010 0.0050 -0.011
W vererriacanane 2,764 2.838 2.804 2.777 2.768
W EXTOT «veonon 2.7 1.5 0.5 0.2
Third slosh
............. 0.0066 0.0053 0.014 0.0067 0.0066
W oreencnnnnann 3,061 2.922 2.9% 3.079 3.07T1
W error ....... 5.1 -2.8 —0.1 0.3
First bending
[P 0.022 0.020 0.021
W oeeeenrenaeans 2.142 2.175 2.159
W erTor ....... i J 1.5 0.8
(e¢) Burnout
First slosh
| 0.0051 0.0050 0.0050 0.00020 0.0052
W oeerernranenan 3.567 3.582 3.582 3.668 3.567
W error ...e.-. 0.4 0.k 2.8 [}
Second slosh
| SO 0.0050 .0050 0.0050 0.0100 0.0050
W veserarnsnans 3.750 STTh 3774 3.676 3,749
W error ....... 6 0.6 2.0 o]
Third slosh
| 0.0050 0052 0.0052 0.0054 0.0054 0.0051
[ P 4,918 3 L.9zh 5.056 5.044 k.g25
W erTOT «ovenss 0.3 2.7 2.6 0.1
First bending
| N 0.0041 0.0040 0.0040 0.0041
W errecasensnns 3474 3.470 3.478 2,466
W error ..e.... -0.1 0.1 -0.2
Second bending
| S 0.0053 0.0054
W cevaseasanane T.103 T.116
W eXTOT wvevees 0.2

w in rad/sec ; error = [(upproximte—enct)/emct] x 100
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o 5705 2 il B
I I I I
2 2 '

1 0 s2 +20g 05+ aig, e (st)s Yo (xs3)52 -

Ng)  Mesli(¥es) D T o 2
0 M; I s 8 +2§1ans-+ah cq2

Yolrg)  Meste(sss) 2 1 e+ 22
0 v M, s Coq 8 +2§2a254-m2
2. 1, NUMERATOR

Starting with the three slosh masses and their coupling through the

rigid-body modes, the

0] iﬁf]— 52
M
1 Ms, ls, B
I
2
ls, g2 + 205 05,5 +ad,

L, )
lss 0
Ms
1
0 E— Y‘] <XS1) 82

approximate charascteristic equation 1s:

M52 52
M

Mspls,
I

s

s° + 2§52ms2s + a§2

52

_M]— Y] (XSE )82
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This can be reduced to the 3-by-3 determinant of Eq. 43 by eliminating

the first two and the sixth rows and columns.

As a first approximation we consider just the diagonal elements of
Eq. 43. The resulting zeros, listed in Table G~II under "Individual
Slosh," have relatively large errors, up to 5 percent. Using the complete
3-by-3 determinant greatly reduces the errors. The zeros, listed under
"Three Slosh," have only one error greater than 1 percent and that is

1.3 percent.

Although a special solution for the third slosh zero at burnout does
not appear necessary, the previous techniques of using the third slosh
mass plus first and second bending i1s employed here. The charscteristic

equation in this case is:

1 0 ¥;§ 52 %T 0

1 1, 52+2§55w85s +w§5 0 Y2<XSB)S2 - 0 (G-b)
° ° %— 1 xs5)s? Y11\(/ITB) %2

o o B;Sz Y2(X53)52 YED(/[:B s2 + 2T pmps + T

which can be reduced to the 2-by-2 of Eq. G-5 by eliminating the first,
second, and fourth rows and columns. The resulting zeros are listed in
Table G-IIc under "Third Slosh + my + np." The error in the third slosh
zero is slightly reduced, to 0.7 percent, and the second bending error

is 0.6 percent.
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TABLE G-II

SLOSH ZEROS OF n, NUMERATOR
(a) Lift-off

INDIVIDUAL THIRD SLOSH
ZERO A?XACT STOSH THREE SLOSH{™ 4 M+ no
First slosh
€ cveeinnnal, 0.0077 0.0050 0.0050
W veroreaaannnas 2.136 2.155 2.138
W ETTOT «vsosens 1.0 0.1
Second slosh
E veeeinniaen, 0.0023 0.0051 0.0050
T 2.136 2.197 2.1
W EeYTOY «evvenns 2.9 0.3
Third slosh
£ e 0.0053 0.0050 0.0053
W veoeeennsnanes 2.267 2.186 2.263
W ErTOr «.veee.. -3.6 -0.2
(b) Max Q
First slosh
N 0.0087 0.0049 0.0050
D svevrnneoaneas 2.77% 2.791 2.766
W ETTOT «eveaons 0.6 0.3
Second slosh
b it 0.001k 0.005k 0.0050
W eossaonsncanes 2,774 2.838 2.810
@ ETTOT veeeeas 2.3 1.3
Third slosh
€ i, 0.0056 0.0051 0.0055
W eevrnannnnnnnns 3.065 2.916 3.051
W eTTOY «veeeesn 5.0 0.5
(¢) Burnout
First slosh
E veniniiiian, 0.0050 0.0050 0.0050
W consranannssas 3.583 3.582 3.582
) ETTOT .+ evvaens 0] 0
Second slosh
€ oviiiiniiaan, 0.0050 0.0048 0.0050
W srsronsrnonsas 3.781 3.775 3.780
W erYOr +.sveesas 0.2 0
Third slosh
€ v, 0.0050 0.0051 0.0053% 0.0052
M eovrvonoaronsa k.992 5.033 5.037 4.955
M ETTOT ovsvenns 0.8 0.9 0.7
Second bending
0.0052 0.0052
W seoenronssanas 6.716 6.759
W BYTOT eeavvvas 0.6
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1+
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3. HIGHER BENDING NUMERATORS

2
T ] —a55M55 S

Y2(XS3)S

o 2o T T )

cioM |1 1szlp
+Y1(x5)[b_4+ T ]

c1oM Yo (xg)

o (G-5)

To approximate the slosh and first bending zeros of the higher bending

(no, N3, OT 7ny) numerators, it is necessary to include a dynamie correction

for the rigid-body modes, the three slosh, and two bending modes.

results in a 7-by-7 determinant, Eq. G-6.

Ms Mo 4 Yoz 5
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Equation G-6 can be reduced to the 4-by-L of Eq. 44 by eliminating the

first, second, and seventh rows and columns.

The simplest approximmtion from Eq. 44 is to consider only the first
three diagonal terms. The resulting zeros are listed in Tables G-III,
G-IV, and G-V under "Individual Slosh." The errors are generally quite

large and are completely unacceptable.

By including the first three rows and columns of Eq. U4, the effects
of slosh cross-coupling are added. The results, listed under "Three

Slosh," are somewhat better but the errors are still too large.

The results from the complete 4-by-L4 are listed under "Three Slosh
+ ﬂ1°” The results are very good in general, with only three frequency
errors greater than 1 percent and these all occur in the My, numerator.
Tmproved approximations for the cases of 2.2 and 2.1 percent errors will
not be considered, but the 6 percent error in the third slosh zero at BO

can be reduced.

For BO we again consider a special approximation involving s dynamic
correction for rigid-body modes, third slosh, first and second bending.

The resulting characteristic equation for the n) numerator is:

Ms
0 “ﬁész 0 0 %f
Mg, lg 1
23 >3 B
1 - & 0 0 .
2
155 g2 +2§53a>s5s +<DS5 Y, (XS5)52 Yo (xs5)sg 0
Ms 511 (XSB) o 2 AT L2 ¥y (xg) "
0 _— g +2 s + 0 LU~
M St M
Ms YE(XS ) Yo (x5)
0 LM‘Q_Bsg 0 S + 2;,2(1)25"" -2 __:M_Q_B_
0 _é Y &2 pi (XB)
M, A(XS ) Cl Ch2 W,
_gY)_;_ (ij)]
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TABLE G-III

SLOSH AND FIRST BENDING ZEROS OF o NUMERATOR

(a) Lift-off
THREE SLOSH
INDIVIDUAL
ZERO EXACT SLOSH THREE SLOBH +

First slosh

0.0050 0.0050 0.00L49 0.0050

() s oeseseenassasnsossssnatsassoneasacnonans 2.138 2.166 2.112 2.1

W) BITOL v tevttonsostonosnsssasensnsosaanos 1.4 -1.2 -0.3
Second slosh

ittt et et e earan et 0.0052 0.0051 0.0051 0.0052

() st v veasasensaasssnsonarcarasasassssaroans 2.220 2.199 2.188 2.218

W BILOT cetvevrenanottinsasonsnsssscssssanss -0.9 -1.5 =0.1
Third slosh

QO 0.0055 0.0046 0.0053 0.0057

(D v ovessenssasarnsontosasossnrearioasosanns 2.k27 2.190 2.263 2.429

(O BFTOT et vvvuneroensasnenrsosonsonssonnas 5.8 —6.8 0.1
First bending

0.0046 0.0047

@ et teeannnetanaeraanaaeee et 1.993 1.999

) BITOT e eevonesoaonssasasnstosssnsssssaa 0.3

(b) Max Q

First slosh

0.0050 0.0051 0.0050 0.0050

B ¢t tenneenetnansonansesnenosassesssnonaans 2.768 2.807 2.765 2.765

W BITOT v evevsnnsonassonrsvssssnsscnssnscans 1.4 0.1 0.1
Second slosh

P 0.0075 0.0053 0.0051 0.0078

() v evoaseasoseeassssassasasresssasossotanes 2.961 2.944 2.856 2.975

) BITOT s 4 eeevvvesesnansosaantnonaanssnanes 0.6 -3.5 0.5
Third slosh

e 0.0050 0.0052 0.0055 0.0041

) v evensentoorencanattasesacronssonsanenans 3.055 2.920 3.068 3.033

Q) BITOT e veusearonnnnnsotnsensnnsonasannns 4. 0.4 -0.8
First bending

QN 0.026 0.018

(D s et eenoneasansoneaaansnesasetocaneanannns 1.995 2.01

W BITOT +osvesosntsotonennnrsoensenensanans 0.8

(c) Burnout

Firat slosh

0.0050 0.0050 0.0050 0.0050

B wantneenaonnserensnnssnsnseanaseesnansons 3.589 3.584 3.58% 3.586

W @ITOL oot eoanennsosaossstssncsesnsessans =0.1 -0.2 -0.1
Second slosh

0.0051 0.0050 0.0050 0.0051

) s ovensnosaanasonnosonasesnssassanasnonanns 3.815 3.797 3.793 3.817

W BYTOY tovrorasevsnsosnstesossanssasasnane 0.5 -0.6 0.1
Third slosh

ittt ittt tettetitiattesaatssatraeas 0.0053 0.0055 0.0054 0.0053

L) e evnusnsrasasnoasonasosnessnasnonesananss 5.03%6 5.039 5.109 5.044

) BYTOT tovusansonasosnsesasasesnnasnsnanes 0.1 1.5 0.2
First bending

b certiiniererettientensaatsnetesornesannnnn 0.0050 0.0050

) s teneonasenosanensrosaasasacassnssnnannnse 2.913 2.913

WETTOT ttvevsrnsnsasesnannssasassssaansanes [¢]
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TABLE G-IV

SLOSH AND FIRST BENDING ZEROS OF n 3 NUMERATOR

(a) Lift-oft
THREE S
ZERO EXACT DELOAL | THREE SLoSH LOSH
+ q.l
First slosh
e e 0.0050 0.0051 0.0050 0.0050
) v e eetetan et e i et 2.13%6 2.181 2.143 2.142
) BTTOT ot venrennnnsennssssasanseanonnnans 2.1 0.3 0.3
Second slosh
b e e e 0.0052 0.0051 0.012 0.0052
() v e e ettt e e on et et et et 2.210 2.190 2.214 2.218
W BTTOT t ettt tsenueseasasatasanssoeansosennas -0.9 0.2 0.4
Third slosh
L i e i 0.0060 0.0051 —0.0020 0.0060
e SR 2.626 2.197 2.214 2.607
) BITOL < eevervnenensnseseneacanoaannnanens -20.0 -16.0 -0.8
First bending
U 0.0046 0.0045
@0 v et e ee e ettt aaiaaa, 1.920 1.915
D BITOT «ttvstosocnonssanenssoensassansnass -0.3
(b) Max Q
First slosh
b i i e i ie i i ae e 0.0050 0.0051 0.0050 0.0050
@ vttt e ettt 2.766 2.823 2.768 2,769
[T R = o o = 2.1 0.1 0.1
Second slosh
f ettt e et e 0.0052 0.0054 0.0055 0.0054
() v estaeeeneecnonsesonasossaseceacasnanans 3.053 2.995 3.045 3.051
W BITOT +tvenissenesasnsssosroccssaassassnns -1.9 0.3 0.1
Third slosh
G 0.0069 0.0052 0.0052 0.0087
L) 4 e v ensuaaeeenesesansunossancaennoacnnanas 3.196 2.909 2.926 3.192
W BTIOL t 4 v s s s eerssesoreeeeeassnrrnrenssas —9.0 8.5 —0.1
First bending
S AP 0.012 0.015
C) o v et sasetis i iansas et st acaseteseeterannaan 2.096 2.115
[ =3 o of o o S 0.9
(¢) Burnout
First slosh
0.0050 0.0050 0.0050 0.0050
Dttt rann et ettt e e et 3.596 3.587 3.585 3.591
W BFTOL v eveennrsoerennsnerseasseanasessansns ~0.3 -0.3 —0.1
Second slosh
e i i it e et 0.0053 0.0051 0.0050 0.0053
) e v v etoomensosoeonnenosoansscannsanennanns z.882 3,824 3.817 3.898
() @TTOT «vvvvesenennanacnsenesnnnasennsnnane —1.h4 1.7 0.k
Third slosh
P 0.005k 0.005k 0.0054 0.0053
) ¢ vevnsenransoanoensaosoasasssncsannasnss 5.014 5.107 5.130 5.046
@ BTTOT t vt encnnnnsseeeensonranosrnnnennas 1.9 2.3 0.6
First bending
e e 0.0050 0.0049
(B 4 eeetes s s tanearaassonsaarasossesnonnes 2.866 2.890
W) BYTOT «ov-vntemseneonnnnansnonoaransensens 0.8

o in rad/sec ; error = [(approximt&emct)/exact] x 100
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TABLE G-V

SLOSH AND FIRST BENDING ZEROS OF 7), NUMERATOR

(a) Lift-off

THREE SLOSH | THIRD SLOBH
INDIVIDUAL
ZERO EXACT SLOSH THREE SLOSH + ", ‘a4
First slosh
ettt i e 0.0050 0.0047 0.0050 0.0050
[ S 2.132 2.194% 2.13% 2.137
w error 3.0 0.2 0.3
Second slosh
0.0052 0.0051 0.021 0.0050
D cevearrneranrrnnnennennenan 2.210 2175 2.216 2.212
W @YTOT +evveasmnnarianconsns -1.6 0.3 0.1
Third slosh
0.0062 0.0051 -0.011 0.0062
D v o vravinansaennesasennenens 2.658 2.197 2.216 2.669
D BTTOT +evrvnvnnnnonennanens -17.4 -16.6 0.4
First bending
b e i e 0.00k4k4 0.0044
@ cetenenne et 1.906 1.898
W EBTTOT «.uvrasasansnansanans 0.4
(b) Max Q
First slosh
S R P 0.0050 0.0051 0.0050 0.0050
D v eresrnnnransnaarnaensnenns 2.764 2.837 2.765 2.766
W BTTOT «ovessssnsessssannnss 2.7 o] 0.1
Second sloeh
f vttt ittt e 0.0053 0.0054 0.03%0 0.0050
B e etraeriaan e 3.047 2.989 2.985 3.038
0 BYTOY wveevvoocnvsnoannanns -1.9 2.1 -0.3
Third slosh
0.011 0.0051 -0.020 0.0095
W vreenrnnsonensasnsansnnsnns 3.210 2.900 2.985 3.279
[4 T D o of <> -9.7 -7.0 2.2
First bending
L e e 0.033 0.017
(O theiner ettt 1.862 1.865
W EBITOT v vviavnevanosnonsnns 0.2
(¢) Burnout
First slosh
| S 0.0050 0.0050 0.0050 0.0050
U eevmeenneennennnenaenanenn 3.606 3.597 3.5 2,596
W BITOT tetvveenscnntonnrsons 0.3 0.4 ~0.3
Second slosh
S 0.0058 0.0051 0.0057 0.0057
W v vearriircesiinerantonanans 4.097 3.915 3.953 Lh.012
@ BITOT & ovsenenennrnranaorns —+.5 -3.5 —2.1
Third slosh
0.0050 0.0053 0.0054 0.0054 0.0051
W v rvenesaneracacaroanansnnes L4.781 4,766 4,738 5.108 4,786
U BTTOT +vveveeoneonennnnnnnn -0.3 -0.9 6.0 0.1
First bending
S 0.0047 0.0049 0.0052
7 2.72% 2.720 2.700
W EBITOr +ceeesssossasnsacanss -0,2 -0.9
Second bending
U 0.0057 0.0055
@ vovensanrocnnaorasnsassonns T7.245 T.225
W ETTOT cvsessnacesssssanccnse 0.3

@ in rad/sec ; error = [(approximte—enct)/emct] x 100
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An wnusual feature of Eq. G-7 is the inclusion of the gyl;(xs5) term. In
general, IYi(xsj)52| >> léYi(xsj)i at slosh mode frequencies so the g
term is neglected; however, this inequality does not hold for the fourth
bending and third slosh mass at burnout. Consequently, the g term was

included.

The cross-coupling of first and second bending through Cqo and oy
is small so these terms were neglected. The Clq and Cyo terms were
retained because the diagonally opposite elements, Y1(x5)/M1 and Yg(xﬁ)/Mg,
are relatively large.

Equation G-7 is reduced to the 3-by-3 of Eq. 45 by eliminating the
first, second, and sixth rows and columns. In the reduction process,
Clyq and c)p cross-coupling terms between the first and second bending
modes are developed but were dropped from Eq. 45 because their effects are
small. The zeros obtained from Eq. 45 are listed in Table G-Vec under
"Third Slosh + n, t ng." The errors for all three zeros are less than

1 percent.
L. EFFECT OF APPROXIMATIONS ON POLE-ZERO SEPARATION

The most critical requirement for any slosh approximation is to
adequately represent the pole—zero separations. A relative large error
in both the pole and zero is acceptable if the separation is accurate.

It is also important to note that approximating a +1 percent separation
by —1 percent is much worse than approximating a 10 percent separation
by 12 percent. In the first case the error is apt to make the difference
between closed-loop stability and instability, but not in the second

case.

To judge the adequacy of the slosh approximations presented here, the
pole—zero separations given by the various approximations* are compared
with the exact separations in Table G-VI. A detailed examination of the
table gives the following conclusions with respect to MSFC Model Vehicle
No. 2:

*The pole approximgtions used in Table G-VI are those listed under
the same headings in Appendix D.
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) The first and second slosh modes are adequately approximated
at all flight conditions by including a dynamic correction
for rigid-body modes, the third slosh and first bending modes,
and a static correction for the second bending mode, the
"Three Slosh + n1(n )" approximation. This approximation
also gives very goog results for the first bending mode.

e The "Three Slosh + 7 (n2)" approximation is adequate for the
third slosh mode at 10 and Max Q; at BO it is necessary to
include a dynamic correction for rigid-body modes and the
third slosh, first and second bending modes, the "Third Slosh
+ oy no" approximation.

These rather complex approximations for the slosh modes are the result
of the unusual characteristics of Model Vehicle No. 2, i.e., three slosh
and one bending mode in a narrow frequency range. For characteristics
more typical of current boosters, such as only two slosh modes and those
well separated from any bending modes, much simpler approximations should

be apparent from the material presented in this report.



TABLE G-VI

SLOSH MODE POLE—ZERO SEPARATIONS

() First Slosh Mode at Lift-Off

POLE—-ZERO SEPARATION

NUMERATOR Three Slosh | Three Slosh | Three Slosh | Three Slosh
Th Slosh Exact
res mhes + g ta(ny) [+ ngsmg)| + g+ ae
o —3.3 7.0 6.5 6.0% 5.4
yp -3.2 6.9% 6.5% 6.0% 5.2
no 4.4 6.5 6.1* 5.6% 5.3
n, -3.0 7.1 6.7° 6.2* 5.2
n, -3.3 6.9 6.4% 5.9% 5.0
(b) First Slosh Mode at Max Q
) -1.0 -1.0 -0.4 _ 0
n, —0.4 —0.4% —0.4* 0.8
o -0.L —0.4 —0.4* 0.6
ns -0.3 -0.3 -0.3" 0.6
u —0.b —0.4 —0.4* 0.5
(¢) First Slosh Mode at Burnout
o] —0.6 0.7 —3.1 —3.1
ur —0.6 -3.0% —2.7% 2.6
no -0.6 -2.9 —2.6% -2.5
n3 —0.6 2.7 —2.5% -2.3
m, 0.k 2.6 —2.4% 2.0

Same zero approximation used as in previous column.

Frequency of zero-—frequency of pole

Frequeney of pole x 100

Separation




Table G-VI (Continued)

(d) Second Slosh Mode at Lift-Off

- ) POLE-ZERO SEPARATION
NUMERATOR Three Slosh | Three Slosh | Three Slosh | Third Slosh
Three Slosh Exact
M + 0 (ﬂg) 0y (712 s "13) tn, T,
B cp 6.5 0 1.2 0.2% 0.4
n, 0.7 -0.2% 1.2% 0.2* 0.2
no 2.9 3.h L. g* 3.8% 4.1
1 4.1 3.k b.g¥ 3.8% 3.7
un k.2 3.1 h.6* 3.5% 3.7
(e} Second Slosh Mode at Max Q
) -8.1 8.9 —9.1 —9.3
mn =79 ~7.8% ~7.8% -9.0
uN —-6.3 2.4 —2.3% 2.8
ns ~0.2 0.1 0.2* 0.2
n, —2.1 ~0.3 ~0.3% 0
. _ S I _
(f) Second Slosh Mode at Burnout
P -1.1 -9.8 —7.0 -6.9
n —0.9 7.3 —6£,3% 6.1
o 0.6 —6.4 —5.4¥ 5.3
N5 o} 4L —3.4% -3.6
U 3.6 -1.6 -0.5% 1.7
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Table G-VI (Concluded)

(8)

Third Slosh Mode at Lift-Off

POLE—ZERO SEPARATION

NUMERATOR Three Slosh | Three Slosh | Three Slosh | Third Slosh

Th Slosh Exact

ree Bios + *mp(ng)  +aplngsmg)) + g+ rac

® 1.1 —3.1 .1 —2.3* —3.h
7 1.6 2.0% 7.0% 3.1% 2.1
o 1.6 9.7 8.6% 10.7% 9.3
n3 0.6 17.8 16.6% 18.8% 18.2
u -0.5 20.6 19.3% 21.6% 19.7

(h) Third Slosh Mode at Max Q
P 3.9 -5.3 -2.6 -1.6
n 5.9 —4.2% -3.2% 2.1
o 6.5 4.8 —3.8% 2.4
N5 1.5 0.3 1.2% 2.1
ny, 3.6 3.0 L.o* 2.5
(i) Third Slosh Mode at Burnout

o —0.9 0.1 ~0.2 0.2 0.7
n 1.1 —0.4* —0.3% 0.8 0.8
N5 2.6 0.3 -0.2% 2.6% 1.7
ns 3.0 —0.3 -0.1% 2.7% 1.3
n, 4.9 1.0 7.1% 2.6 -3.5
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I

1. ¢ NUMERATOR

For the higher bending (1, N3, and ny) zeros of the @ numerator we

AFPENDIX H
APPROXIMATIONS FOR HIGHER BENDING ZEROS

use an approximation similar to that employed for the denominator, i.e.,

a dynamic correction for the slosh masses.

for the n; 2ero can then be written as

15 Msqls; Mgolsy Mszlss

I I I I

0 1 0 0

0 0 1 0

0 0 0 1
Yi(xg)  MsYi(¥sy) Mspli(Xsp)  Mss¥i(¥ss)

My My L Mg

where 1 = 2, 3, L

The characteristic equation

52'+2§i“ﬁs'+a§

0

(H-1)

The g; term is included here because the diagonally opposite term, Yi(xﬁ)/Mi,

represents a direct control input to the bending equation.

The reduction of Eq. H-1 to a quadratic equation in s, Eq. 46, is
straightforward.
The results are generally good except for the Mo zero at BO which is
better approximated by the third slosh mass plus first and second bending,

Eq. k2.
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TABLE H-T

HIGHER BENDING ZEROS OF ¢ NUMERATOR

LIFT-OFF MAX Q BURNOUT
ZERO
Exact | Approx. Exact | Approx Exact | Approx.

Second bending

£ v 0.0050 | 0.0049 | 0.0070 | 0.0068 | 0.0053 | 0.0050

D vrerenennn 5.169 5.163% 5.783% 5.763 7.103 6.901

W error .... -0.1 -0.3 -2.9
Third bending

E v 0.0053 | 0.0052 | 0.0083 | 0.0081 0.0050 | 0.0050

W eennrnnnns 9.275 9.260 9.795 9.809 11.80 11.76

W ETYTOY «v.. ~0.2 0.1 -0.3%
Four bending

(O 0.0052 0.0050 | 0.0062 0.0066 | 0.0051 0.0050

W eeenennnnn 12.71 12.63 12.98 12.80 24 .96 2k .99

W EYTOT +... -0.6 —1.4 0.1

®w in rad/sec ; error = kapproximate—exact)/exact]x 100

2. 1, NUMERATOR

The basic approximation is quite similar to that used above. The
approximate characteristic equation is
1 0 0 0 Y (x )52
1 S-I
2
0 1 0 0 Yl(XSQ)S
2
0 0 T 0 T3 (¥s4)® = 0 (H-2)
3
Ms]Y1(Xs1) M52Y1(X52) M85Y1(xs5) Y1(XB) .
My M M M 11
Ms1Yi(Xs1) MSQYi(XSQ) MSBYi(XS5) Yi(xB) 52-+22__—s-+_2
My M My M; ke R

The reduction of Eq. H-2 to & quadratic in s, Eq. 47, is again straightforward.
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The zeros obtained from Eq. 47 are listed in Table H-II. Only two
errors are greater than 1 percent and the maximum error is 1.4 percent.
The 1.1 percent error in the Mo 2€To at BO is reduced to 0.6 percent by
using the third slosh plus first and second bending approximation of
Eq. G-5.

TABLE H-TI

HIGHER BENDING ZEROS OF N NUMERATOR

LIFT-OFF MAX Q BURNOUT
ZERO
Exact Approx. Exact |Approx. Exact Approx.
Second bending
& vt 0.0050 | 0.0050 | 0.012 0.0097 | 0.0052 | 0.0050
W eevvenannn 5.072 5.065 5.3%93 5.348 6.716 6.641
» error .... 0.1 —0.9 1.1
Third bending
E oot 0.005% | 0.0052 | 0.0064 | 0.0054 | 0.0050 | 0.0050
W voeerennns 9.2l 9.216 9.849 9.890 |11.74 11.75
W error .... —-0.3 0.k 0.1
Fourth bending
€ v 0.0052 | 0.0051 0.0070 | 0.0076 | 0.0051 0.0051
W vveenennen 12.72 12.62 12.91 12,73 2k .99 25.00
® error .... —0.9 —1.4 o]

o in rad/sec ; error =‘kapproximate—exact)/exact]x 100

3. HIGHER BENDING NUMERATORS

As noted in Section IV, the approximation for the n,, N3 and 7,

numerators can be obtained by generalizing Eq. H-2 or Eq. 47.

obtaining from the resulting characteristic equation, Eq. 48, are listed
in Tebles H~III, H-IV, and H-V.

The zeros

The largest error (5.9 percent) occurs

in the Ny 2€ro of the Ny numerator, but it can be reduced to 0.3 percent

by using the third slosh plus first and second bending approximmtion of

Eq. 45.

2 to 3 percent range; all otlier errors are less than 1 percent.

117

There are two errors in the n, numerator which are in the



TABLE H-ITTI

HIGHER BENDING ZEROS OF U NUMERATOR

LIFT-OFF MAX Q BURNOUT
ZERO
Exact Approx. Exact Approx. Exact Approx.
Third bending
£ e 0.0052 | 0.0051 0.0087 | 0.0075 | 0.0050 | 0.0050
W veenrennnn 9.043 9.001 9.l115 9.366 |11.72 11.72
W error .... 0.5 -0.5 0
Fourth bending
£ veeennnn 0.0051 0.0051 0.0062 0.0070 | 0.0051 0.0050
D ervnnenns 12.58 12.53% 12.81 12.69 25.00 25.01
W error .. —0.h -0.9 0
TABLE H-IV
HIGHER BENDING ZEROS OF n5 NUMERATOR
LIFT-OFF MAX Q BURNOUT
ZERO
Exact |Approx. Exact | Approx. Exact | Approx.
Second bending
E v 0.0051 0.0050 | 0.011 0.0092 0.0050 | 0.0049
B eemenennns 5.109 5.101 5.562 5.53% 6.624 6.626
W error . —0.2 —0.5 0
Fourth bending
£ veievinn. 0.0050 | 0.0050 | 0.0072 | 0.0069 | 0.0051 0.0050
W vvreennnns 12.39 12.37 12.53 12.48 24,96 2h.97
» error .... —0.2 0.4 0

w in rad/sec H

error =
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HIGHER BENDING ZEROS OF Ty, NUMERATOR

TABILE H-V

—————————— —
LIFT-OFF MAX Q BURNOUT
ZERO -
Exact |Approx. Exact Approx. Exact Approx.
Second bending
E vt 0.0053 | 0.0051 0.00008| 0.0090 | 0.0057 | 0.0052
WD ceeeneannn 5.203% 5.161 5.955 5.802 7.245 6.820
W error .... —0.8 —2.6 5.9
Third bending
E evininnnt 0.0050 | 0.0050 | 0.013 0.0072 0.0051 0.0050
B eenennnnen 8.831 8.847 8.631 8.877 |11.79 11.77
Q error .... 0.2 2.9 0.2
w in rad/sec ; error = kapproximate—exact)/exact]x 100
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APPENDIX I
MODEL VEHIOLE NO. 2 CHARACTERISTICS

This appendix summarizes the dynamic characteristics of the MSFC
Model Vehicle No. 2.

Aerodynamic characteristics are given in Table I-II.

Various dynamic parameters are listed in Table I-I.

Bending mode shapes

and slopes are plotted in Figs. I-1 and I-2.

TABIE I-T

DYNAMTIC PARAMETERS

FLIGHT CONDITION
PARAMETER UNITS
Lift-Off Max Q Burnout
Time sec 0 80 157
T kg 5,193,233 5,819,805 4,786,200
Xe, kg o) 227,178 1,735
M kg-sec?/m 423,565 266,051 116,412
g m/sec? 12.261 21.021 41.100
Vy m/sec 0 519.3 2,520.5
q kg /m? 0 3,841 9%
Xeg m 37.8 by .2 67.2
I kg-m-sec® | 282,200,000 | 251,100,000 | 90,400,000
1g m —35.26 —38.66 -6l .66
¢, 0.0050 0.0050 0.0050
ay rad/sec 2.1564 2.%185 2.915
M kg-sec?/m 193,190 170,750 17,867
to 0.0050 0.0050 0.0050
a, rad/sec 5.0617 5.6448 6.592
Mo kg-sec2/m 165,520 115,670 29,068
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Table I-I (Continued)

FLIGHT CCONDITION

PARAMETER oNITS |
Lift-Off Max Q Burnout

¢s 0.0050 0.0050 0.0050
w5, rad/sec 8.7826 9.1835 11.711
Ms kg-sec?/m 162,150 98,115 169,960
6, 0.0050 0.0050 0.0050
ay, rad/sec 12.356 12.504 2k . 862
M, kg-sec?/m 350,110 565,740 203,340
Xg, m 16.09 10.16 6.24
1s, m —21.71 ~31.04 ~60.96
s, 0.0050 0.0050 0.0050
Ws rad/sec 2.1363 2.7646 3.561k4
Mg, kg-sec?/m 11,158 11,612 336
Xs5 m 43,15 31.08 24 .84
lspo m 5.35 -10.12 2,26
¢ 0.0050 0.0050 0.0050
Wes rad/sec 2.136% 2.7646 3.7699
Mg, kg-sec?/m 17,048 18,399 772
Xg3 m 61.% 61.35 61.3%5
155 m 23.55 20.15 —-.85
QSB 0.0050 0.0050 0.0050
“)55 rad/sec 2.1363 2.8274 h.mak
Mg kg-sec?/m 11,173 11,173 11,173
C 4 -

F 8 -

Mg kg-sec?/m 925.07

1g m 1.2014 -
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Table I-I (Concluded)

FLIGHT CONDITION

PARAMETER UNITS
Lift-off Max Q Burnout
Ig kg-m-sec? 3456.4 ——
tr 0.018421 -
g rad/sec 51.138 ——
Xg m 2.54 ——
A m? 56.995 -
Ko kg/m 1,249,300 -
Ky me/sec 800 -
K5 m5/kg—sec 0.17 ——
K, kg/m 223,780 -
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TABLE I-TIT
AERODYNAMIC CHARACTERISTICS

(a) Max Q

PARAMETER | UNTITS VALUE PARAMETER UNITS VALUE
Ny, kg 1,468,100 LI kg/m —260,610

Mg, = Ng kg-m 17,483,000 NTl22 kg/m 117,170
Mg, kg-mf | 3.9679 x 107 M., kg/m ~9k,150
Ny, kg/m 21,197 NmL2 kg/m 146,030
Nns kg/m —53, 47 1\1,]13 kg/m 199,240
Nﬂ3 kg/m 15,556 s kg/m —192,820
NmL kg/m —291,640 Nn55 kg/m 75,910
Nﬁ1 kg 1,084,200 N“u5 kg/m —272,470
Nﬁg kg 239,790 Nn1u kg/m —703,440
Nﬁ5 kg 1,152,000 N”gu kg/m Lh7,5%0
N;uL kg ~746,670 Nﬂ5u kg/m 483,210
My, kg 4,549,400 N, kg/m 1,133,320
M, kg 2,938,300 LE kg L, 736,800
M kg 6,370,500 hn12 finy | K8 —2,175,500
Mnu kg 17,410,000 Nn15 = N;]51 kg 1,997,800
M, kg-m 55,269,000 Ay, = My, kg —3,633,900
M, kg-m | ~—64,429,000 N%Q kg 2,673,400
Mﬁ5 kg-m 21,005,000 Nﬁ25 = Nﬁ52 kg -1,015,400
N;]4 kg-m | —125,770,000 Mioy, = Nays | X8 4,065,400
Nn11 kg/m 114,520 Nﬁ55 kg 1,974,400
Nn21 kg/m —90,160 Ay = Nﬁhj kg -3,626,700
NT151 kg/m 30,950 Niy,), kg 13,144,800
LET kg/m —147,690
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Table I-II (Concluded)

(b) Burnout

PARAMETER | UNTTS VAIUE
Ny, kg 24,165
Mo, kg-m —117,000

All other aerodynamic derivatives
are assumed zero
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APPENDIX J
MODEL VEEICLE NO. 2 TRANSFER FUNCTIONB

The following pages list the transfer function poles and zeros for
Model Vehicle No. 2 at "Lift-Off," "Max Q," and "Burnout." These "exact"
values were obtained from the complete 11-by-11 matrix of Fig. 3. The
matrix elements are also listed; column 13 represents the right side

(Be column) of the matrix.
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MATRTX ELEMENTS

LIFT OFF
R@gw CoL CUEFFICIENTS
s2 s! s
1 0. 1.00000000c 00 Q.
2 _ 0. C. ~1.22609998E 01
3 2¢463429996E-02 -0 -Q0.
A 4¢02479994E-02 -0, -Q
5 263779998E-02 -0. ~0.
6 0. 0. 4.,26299995E~C1
8 0. 0. 6.75499994E-01
9 0. Q. 7.85599995E-01
10 -1.04959999E~02 -0 —6.13049996E QO
11 0. O. C.
13 Q. O Ce
1 (VR [N Ce.
2 1.CO00C00000E Q0 -0 )
3 -8.58389997E-04 -Q. ~4.847899G7E-C~
4 3.23199996E-04 ~Qe. ~7.406993989E-04
5 9.32389987E-04 -0 -4,85439998E-04
[ D 0. ~5.43799996E-C3
7 O. 0. -1.19599998E-02
8 O O ~1.93599997E-02
9 O. O. ~2.54999998¢E-02
10 __ 6.04459989E-04 =0 3.24639997E-01
11 O. e .
[/ 0. C.
O. 1.00C0COCOE QO O.

=2.17C9%994E 01

-C.

~1.22609998E 01

1.0000C000E 00
Oe

2.13629997E-02

4.56379998E CO
o.

0. 0. O.

4453159994E-01 -0. 4.35999995€E-01

2.81969997E-01 =0. 5.84395998E-01

7.13499993E-02 =0 1.57399994E-01
~1.12279998€E-01 -0. 8.74699986E-01

O. O. 0.

O. 0. C.

O. C. C.

Ue 1.00000000E €O C.

534999996E 00 =0. ~-1.22605998E 01

0. O. Ce.

1.00000000E 0O

2.13629997E-02

4.56379998E 00

o.

0.

0.

" el "~
O O O N[ W N ) (O Ojcc o vl Win =~

VUi ol N P s eSS oW e e wwwlib i RN N NI RO T N e el b e e L

-3.98739997E-01 -0. 3.08095994E=01
—4.56719995E-01 -0« ~1.18996998E~02
-1.93569998E-01 -G ~5.70499992E=01
2.15039998E-01 ~0. ~8.62899995E=01

O. 0. o.

11 O. 0. 0.

13 O. 0. Q.

1 0. _ 1.CGCoZ000E @0 Ce
2 2.35499996E 01 -0, ' ~1,22605998E 01

3 Ce O 0.

‘f O. 0. 0.
5 1.00000000E 00 2.13629997E-02 . 4.56379998E 00
6 -6.99479997E-01 -Q. £.97999955E=-02
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__Matrix Elements (Continued)

g2

CYEFFICIENTS
S

g0

5 7 2.95599997E-02 -0. ~5.80899996E-01
5 s 9.00606994E~-01 -0, -3.60799998E~-01
5 9 8.00199986CE~-01 -0. 7.88999993E=01
5 10 0. De Ce
5 11 0. 0. C.
5 13 _ 0. G. C.
6 1 o. 0. c.
6 2 Qe Q. O
6 3 2.61729997E-02 -0. 2.51799993E~02
6 4 ~3.5186%$997E-02 -0. 2.718959$8E=-02
6 5 -4,04539996E~02 -G 4.02996991E=03
6 6 1.00C0CQ00E 00 2.15639997€-02 5.52049594E G0
6 7 O 0. 1.1086G6599¢ QO
6 8 0. G. 1.37909999E CO
6 9 C. 0. 1.6038G699GF CO
6 10 =2+.39009997E=-02 -G ~1.25155998E 01
6 11 O. G. C.
6 13 0. . 0. C.
7 1 0. 0. C.
7 2 0e O. C.
7 3 1.9007S999E-02 -0. 2.947969G5E-~02
7 4 -4,70419991E~02 -0. B ~1.21995998E=-03
7 5 1.99499999E-03 -0. ~2.920999G4E-02
7 6 0. 0. , 9.95649993E-01
7 7 1.0000G000E 00 5.06169993E-02 2.66889996E 01
7 8 0. o 0. 1.57749999E 00
7 9 0. 0. 1.8345999GE GO
7 10 -2.8186%$999E-02 =0 ~1.43169998E 01
7 11 0. C. C.
713 O. 0. , 3 C.
8 1 0. Oa Ce
8 2 0. o 0. B Ce
8 3 4.90999991E-03, -0. 5.21196995E-02
8 4 =2.03519997E-02  -0. ~5.99799997E=02
8 5 6.20569992E~02 -0. ~2.48599997E-02
L ] 6 O i __ C. 9.93149996£-01
) 7 0. Ge 1.26506999% GO
8 8 1.0000C000E 00 _ 8.78259993E-02 7.87T079984E 01
8 9 Oe . 1.8301C000E 00
3 10 -2.91179997E-02_ =0 ~1.42819998E 01
3 11 O. 0. C.
5 13 Ou - 0. C.
9 1 Oe Q. C.
9 2 Oc ) . A_K_E_O_-__ — G-
) 3 -3.57839996E-03 -0. 2.787959G9E-02
S 4 1.04709999E-02  -0e _ ~4.20199990E-62
9 5 2.55369997E~02 -0. 2.517959GS8E~-02
9 6 O. - 0. 4,51286994E-01
9 7 Ge - 0. 5.745+95932~C1L
G 8 0. 0. _ 7.14855992E=01
9 9 1.00000000E 0O 1.23559998E~C1 1.5325CC.000E 02
9 10  _ =1.36239998E=02 __ ~=0. -£.48545999E 00
9 21 Ce O Ce
S 13 0. __ 0. 0.
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Matrix Elements (Concluded)

LIFT JFF
REgwWw COL CAEFFICIENTS
52 s’ s©

10 1 O -3.21539998E£~-01 O«

10 2 1.23379998E 01 —0. 3.94239998E 00 _
1C 3 0. Q. Ce.

1Q 4 . Q. 0. C.

10 5 O. Q. 0.

10 6 ~-3.33969998E-01 -0. ~1.37099999E-01
1C 7 ~-3.37449998E=-01 -Q. -1.7459999GE=01
10 8 =3.41499999E-01 -G. ~2.171999S9E~01
1 9 -3.44989994E~-01 -Q. ~2.525999G69~-011
10 10 1. 000000Q000E CJ L.8839999SE 00 2.61899969E C3_
10 11 O. C. ~2.61509997€E (€3
10 13 Oa Ge Ce

1l 1 Oe Ge O.

11 2 Qe Je Coe

11 3 Oe O Ce

11 4 Ce Q. [o)8

11 5 [ Q. Qe

i1 6 [¢18 Co Q.

1 l 7 O - 0 . 0 -

11 8 Qe Q. Ce

11 9 Ou O. Ce

11 10 Qe -1.02089998E 01 ~5.67469990E 02
11 11 O. 6.72039992C 01 1.4675C000E 03
11 13 Qe Q. 8.00000000E 02
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FLIGHT CONDITION: LIFT-OFF
DENOMINATOR

Coefficient of s-0 46.510

Coefficient of s° 3.5209 x 104

Number of roots = 20
REAL ROOTS COMPLEX ROOTS
(sec_1)
POSITIVE IN LHP® ¢ o (rad/sec)

0 0.0044526 2.0299

0 0.0049657 2.1316

0 0.0051888 2.2211

14.56% 0.0054400 2.6066

0.0047900 5.2894

0.0049015 9.1876

0.0049500 12.589

0.098k4 3k h7.040

*Left-half-plane
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FLIGHT CONDITION: LIFT-OFF

7/B. NUMERATOR

Coefficient of s'8 = 1.7354 x 10%
Coefficient of s© = —1.%209 x 1015
Z/Bc High frequency asymptote = 573.12/52
2/Bc Low frequency asymptote = —3.7516/s2
Number of roots = 18
REAL ROOTS COMPLEX ROOTS
(sec™)
POSITIVE IN LHP ¢ o (rad/sec)
—0.86891 0.0043063% 1.9135
0.86927 0.0060275 2.1345
0.003944g 2.1345
0.0060881 2.6364
0.0053279 5.2445
0.0050645 8.8709
0.0050122 12.346
—0.58985 x 10_lL 24,045
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FLIGHT CONDITION: LIFT-OFF

9/B. NUMERATOR

Coefficient of slT = —958.57
Coefficient of sl = —1.0773 x 1014
¢/Bc High frequency asymptote = —20.610/s>
9/B. Low frequency asymptote = =—0.30597/ 52
Number of roots = 17
REAL RﬂOTS COMPLEX ROOTS
(sec ')
POSITIVE IN LHP ¢ w (rad/sec)
0 0.027610 2.1395
—0.017962 2.1403
0.00501 35 2.1110
0.00527765 2.4173
0.0049786 5.1687
0.0052999 9.2745
0.0051853 12.705
0.25776 x 10_4 23.224
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FLIGHT CONDITION: LIFT-OFF

ﬂ1/5c NUMERATOR

Coefficient of s'7 = 3.7896 x 10%
Coefficient of 82 = T7.5694 x 1O1u
n1/Bc High frequency asymptote = 814.79/s2
”1/Bc Low frequency asymptote = 2.1498
Number of roots = 17
REAL ROOTS COMPLEX ROOTS
(sec—1) S e
POSITIVE IN LHP ¢ o (rad/sec)
0 0.0076531 2.1355
0 0.0023%185 2.1356
0 0.0052639 2.2673
0.0050070 5.0715
0.0053264 - 9.241%
0.0052096 12.722
0.23340 x 107 22.92)

136



FLIGHT CONDITION: LIFT-OFF

no/Be NUMERATOR

Coefficient of s!'T = L.s5hhh x 10t
Coefficient of 82 = 1.5753 x 1014
ne/Bc High frequency asymptote = 977.08/s5
qg/Bc Low frequency asymptote = O.447k
Number of roots = 17
REAL ROOTS COMPLEX ROOTS
(sec ')
POSITIVE IN LHP ¢ o (rad/sec)
0 0.0046294 1.9928
0 0.0050077 2.1381
0 0.0052341 2.2202
0.0055408 2.h27h
0.0052046 9.0433
0.0051296 12.581
0.63426 x 1076 22.535
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FLIGHT CONDITION: LIFT-OFF

”5/5c NUMERATOR

Coefficient of 817 = 4.6838 x 10%
Coefficient of s° = 5.2103 x 1012
T]}/Bc High frequency asymptote = 1007.1/s2
n3/6c Low frequency asymptote = 0.14798
Number of roots = 17
REAL ROOTS COMPLEX ROOTS
(sec_])
POSITIVE IN LHP ¢ o (rad/sec)
0 0.0044529 1.9204
o) 0.0049945 2.1357
0 0.0051954 2.2104
0.006041Y 2.6263
0.0050948 5.1088
0.0050254 12.391
—0.6088% x 107 22.129
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FLIGHT CONDITION: LIFT-OFF

ny/B, NUMERATOR

Coefficient of s'T = 2.0845 x 101L
Coefficient of 82 = 1.1915 x 1012
Tlu/Bc High frequency asymptote = 448.18/s7
n,/Be Low frequency asymptote = 0.033841
Number of roots = 17
REAL ROOTS COMPLEX ROOTS ‘
(sec_1 )
POSITIVE IN LHP ¢ o (rad/sec)
0 0.0043996 1.9055
0 0.0049715 2.1315
0 0.0051823 2.2100
0.0061734 2.6583
0.0052640 5.2029
0.0050192 8.8305
0.46563% x 10"6 21.807
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MAXIMUM DYNAMIC PRESSURE
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MAXTMUM DYNAMIC PRESSURE
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FLIGHT CONDITION: MAX Q

DENOMINATOR
Coefficient of s°0 = %5.506
Coefficient of 8 = 1.0175 x 10'2
Number of roots = 20
REAL ROOTS COMPLEX ROOTS
(sec™) .

POSITIVE IN LHP ¢ w (rad/sec)
—0.042015 0.01408% 2.2338
-0.27859 0.0049756 2.7504

0. 3644 0.0057068 30471

14.516 0.0087034 3.1313
0.0083847 6.0224
0.0071205 9.9440
0.0063856 12.894
0.098643 47.526
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FLIGHT CONDITION: MAX Q

%/B. NUMERATOR

Coefficient of s18 = 2.h02h x 104
Coefficient of s° = —2.4500 x 1016
Z/BC High frequency asymptote = 676.62/s2

Z/ﬁc Low frequency asymptote = -—2407.9
Number of roots = 18
REAL ROOTS COMPILEX ROOTS
(sec'_1 )
POSITIVE IN LHP ¢ o (rad/sec)

—1.0885 0.014463 2.0718

1.1226 0.0052282 2.7227

0.0049970 2.7670

0.0080914 3.1154

0.0087558 5.9292

0.0066186 9.7527

0.0067059 12.726

-0.00014872 25.528
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FLIGHT CONDITION: MAX Q

©/Bo NUMERATOR

Coefficient of s17T = —105L4.1
Coefficient of s© = —1.1924 x 103
¢/Be High frequency asymptote = —29.688/s>
©/Be Low frequency asymptote = ~—1.1719
Number of roots = 17
REAL ROOTS COMPLEX ROOTS
(sec)
POSITIVE IN LHP ¢ o (rad/sec)
0.013%693 0.021978 2.1424
0.00k0212 2.750k4
0.0052771 2.7636
0.006458% 3.0809
0.0069610 5.7827
0.0082900 9.7948
0.0062388 12.983
—0.48013 x 107 2h.635
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FLIGHT CONDITION: MAX Q

n,/B. NUMERATOR

Coefficient of s1T = 3.8546 x 10%
Coefficient of s®¢ = 6.5067 x 1012
U1/Bc High frequency asymptote = 1085.6/s3
n1/Bc Low frequency asymptote = 6.3948
Number of roots = 17
REAL ROOTS COMPLEX ROOTS
(sec—1 )

POSITIVE IN LHP 4 o (rad/sec)
—0.041119 0.0087036 2.7740
—0.471k2 0.0014088 2.7740

0.56825 0.0056331 3.0652
0.011804 542933
0.0063531 9.8491
0.0070377 12.911
0.37070 x 10 2 2lk.200
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Coefficient of s17T

Coefficient of s

No/Be High frequency asymptote
n2/Bc Iow frequency asymptote

FLIGHT CONDITION: MAX Q

No/Be NUMERATOR

5.7803 x 104+
3.9497 x 1012

1628.0/s2
0.38818

0

I

Number of roots = 17

REAL ROOTS COMPLEX ROOTS
(sec—1)
i POSITIVE IN LHP 4 w (rad/sec)
—0.041556 .025814 1.99
k—o.2;8u5 0050075 2.7678
0 5117é“ .0075405 2.9611
7 . 0049662 3.0554
7777777 7 .0086865 9.4150
_ .0061540 12.807
L7363 x 102 23.725
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FLIGHT CONDITION: MAX Q

nB/BC NUMERATOR

Coefficient of s1T = 6.8743 x 104
Coefficient of s = 6.6955 x 10'2
le/Bc High frequency asymptote = 1936.1/s>
n5/ﬁc Low frequency asymptote = 0.65803
Number of roots = 17
REAL ROOTS COMPIEX ROOTS
(sec_1)

POSITIVE IN LHP t o (rad/sec)
—0.040980 0.011872 2.0962
—0.48967 0.0050189 2.7659

0.57284 0.0051527 3.0531
0.0069228 3.1960
0.010667 5.5624
0.0072286 12.526
0.55631 x 107 23,352
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FLIGHT CONDITION: MAX Q

1,/B, NUMERATOR

Coefficient of s'7 = 1.1884 x 10*
Coefficient of s© = —2.8081 x 101!
nu/ﬁc High frequency asymptote = 334.70/83
UA/BC Low frequency asymptote = —0.027598
Number of roots = 17
REAL ROOTS COMPLEX ROOTS
(sec_1)
POSITIVE IN LHP £ o (rad/sec)
—0.040217 0.029712 0.40607
0.032842 1.8615
0.0050104 2.763%6
0.005305% 3.0471
0.011209 3.2097
0.78300 x 10—# 5.9553
0.012640 8.6312
0.73576 x 10'JJr 23,081
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5,88059998E=-01
9.528999G62E=01
6.,20179993E 02
-9.35819995E 00
0.

2.



MATRIX ELEMENTS

BURN OUT
ROW COL COEFFICIENTS
S2 s! s0

10 1 0. -3,21539998E~-01 -0,

10 2 2.17909998E 01 0. 1.32149997€E 01
10 S 0. 0. 0.

19 4 0. 0. 0.

10 5 0, 0. 0.

10 6 =3.29069996E-0x “0e -2.77499996E-01
10 7 -3,32929999E=01 “0. -4,15299994E~01
10 8 =3,40239996E-01 =0 ~6.72999994E~01
10 9 -3.,63089997E-01 “0e =1.45519999E np
10 10 1.00000000E 00 1.88399999E 00 2.62829998E 03
10 i1 0. 0. «2,61509997E 03
10 i3 0. 0, 0.

i1 b 0. 0 0.

11 2 N, 0. 0.

-Ll 3 0. 0' no

i1 & 0, 0. 0.

S 5 0. 0. 0.

il [} 0. 0. 0.

i 7 0. 0 0.

1 8 0. 0. 0.

11 9 o. 0. 0.

11 23 0. ~1.02089998E 01 ~b6.,67469990E 02
11 “1 0, 6.72039992E 01 1.46750000E 03
i1 M) 0. 0, 8.00000000E 02
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FLIGHT CONDITION: BURNOUT
DENOMINATOR

Coefficient of s€0 = 38.752
Coefficient of s© -1.0817 x 1012

Number of roots = 20
REAL ROOTS COMPLEX ROOTS
(sec_1)
POSITIVE IN L?P gi ] o (rad/sec)
—0.01k276 0.17621 0.040733
14142 0.0038963 3.4091
0.0047959 3.6800
0.004 3226 L.0265
7 0.0050804 4.9510
0.0027954 7.1185

0.0045739 7 11.858

0.0052562 24,991

| 0.097951 52 .50k
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FLIGHT CONDITION: BURNOUT
Z/B. NUMERATOR

Coefficient of s18

6.2570 x 10*

Coefficient of 80 = —2.8261 x 1019
2/B. High frequency asymptote = 1614.6/s°
7/B. Low frequency asymptote = 2.6126 x 106
Number of roots = 18
RFAL ROOTS COMPLEX ROOTS
(sec_1)
POSITIVE IN LHP 4 (rad/sec)
—-2.1262 0041410 2.9855
2.1282 .0049869 3.57%0
.0049300 3.7389
.0048511 k.T765
.0061 474 7.5465
.0051887 11.926
—0.0017662 23,704
.00685%5 24 .582
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FLIGHT CONDITION: BURNOUT

®/B, NUMERATOR

Coefficient of s1T = -5805.3
Coefficient of sO = —5.3401 x 1012
®/B. High frequency asymptote = =149.81/s2
®/Be Low frequency asymptote = 4.9368
Number of roots = 17
REAL ROOTS COMPLEX ROOTS
(sec—1) ]
POSITIVE IN LHP ¢ w (rad/sec)
-4
0.78038 x 10 0.0040671 3.4742
0.0051065 3.5672
0.0050046 3.7503
0.0050636 L.9179
0.0053231 7.1027
0.0050488 11.796
—0.86895 x 107 22.709
0.0051197 2k . 96k
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FLIGHT CONDITION: BURNOUT
n1/Bc NUMERATOR

Coefficient of s'T = L4.,4892 x 10D
~8.4765 x 1012

Coefficient of s©

q1/6c High frequency asymptote = 11584/s3
n1/BC Low frequency asymptote = 7.8363
Number of roots = 17
REAL ROOTS COMPLEX ROOTS
(sec—1)
POSITIVE IN LHP ¢ o (rad/sec)
—0.014118 0.18375 0.038639
0.0050012 3.5833
0.00501 38 3.7814
0.0051851 k.9916
0.0052222 6.7156
0.0050273 11.7H1
~0.54560 x 10_4 22.456
0.0050836 2Lh.992
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L

ng/Bc High frequency asymptote

FLIGHT CONDITION:

n2/5c NUMERATOR

ﬂg/ﬁc Low frequency asymptote

Number of roots

17

BURNOUT

Coefficient of slT = 2.7821 x 10D
Coefficient of s = —1.0743 x 1012
= T179.2/sd
= 0.99316

REAL ROOTS COMPLEX ROOTS
(sec_1)
POSITIVE IN LHP ¢ o (rad/sec)
-0.014227 17857 0.040066
. 0050047 2.9126
.0050076 3.5887
.0050946 3.81L5
.0053173 5.036k
.0050088 11.718
N .57078 x 10+ 22.106
.0050696 2Lk .996
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FLIGHT CONDITION: BURNOUT

q5/ac NUMERATOR

Coefficient of s'T = L.7266 x 10%
Coefficient of s© = —6.6713 x 10"
nB/Bc High frequency asymptote = 1219.7/82
nB/BC Low frequency asymptote = 0.061674
Number of roots = 17
REAL ROOTS COMPLEX ROOTS
(sec—1)
POSITIVE IN LHP t w (rad/sec)
—0.014477 0.16616 0.043810
0.0049589 2.8661
0.0050092 5.5957
0.005253%6 3.8816
0.0053616 5.0142
0.0049513 6.6243
—0.25339 x 10_lL 21.489
0.00506T4 24 . 961
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Coefficient of s17

FLIGHT CONDITION:

BURNOUT

n),/Be NUMERATOR

Coefficient of s0 =

nu/ﬁc High frequency asymptote =
nh/ﬁc Low frequency asymptote

Number of roots

3.7504 x 10%
-1 % 101!

= 17

967.80/s2
0.013356

REAI ROOTS COMPLEX ROOTS
(sec 1)
”7POS%?fY%aE§,%F?,__ ¢ ) o (rad/sec)
—~0.01483%5 0.14669 0.050856
- o 0.0047408 2. 724k
- 0.0049988 3.6062
- _'_0.0057557 4.0972
7 0.00k956k L. 7805
0.0057028 7.2448
0.0050610 11.785
~0.53415 x 10'lL 19.285
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